matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenAsymptote
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - Asymptote
Asymptote < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Asymptote: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:30 Mi 09.05.2012
Autor: Luiii

Aufgabe 1
Geben Sie den Funtionsterm einer geborchenrationalen Funktion f an, deren Graph die Asymptote mit der angegebenen Gleichung hat.
b) y=3x

Aufgabe 2
Geben Sie eine gebrochenrationale Funktin f an, deren Graph sich für x --> + und - unendlich dem Graphen der Funktion g nähet.
b) g(x) = 3-2x
e) g(x) = x²-2

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Wie man eine Asymptote einer gebrochenrationalen Funktion bestimmt weiß ich, ich hab allerdings keine Ahnung,wie es andersrum abläuft.
Bitte dringend um Hilfe!

        
Bezug
Asymptote: allgemeine Vorgehensweise
Status: (Antwort) fertig Status 
Datum: 14:39 Mi 09.05.2012
Autor: Roadrunner

Hallo Luiii,

[willkommenmr] !!


Andersrum geht es, wenn Du zu der gegebenen Asymptotenfunktion einen gebrochen-rationalen Term addierst, welcher für [mm] $x\rightarrow\pm\infty$ [/mm] auch gegen 0 strebt.

Gruß vom
Roadrunner


Bezug
                
Bezug
Asymptote: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:46 Mi 09.05.2012
Autor: Luiii

Dankeschön :)
und wie komme ich auf den Term der gegen 0 strebt?

Bezug
                        
Bezug
Asymptote: Beispiele
Status: (Antwort) fertig Status 
Datum: 14:53 Mi 09.05.2012
Autor: Roadrunner

Hallo!


>  und wie komme ich auf den Term der gegen 0 strebt?

Da gibt es doch jede Menge von, wie z.B. [mm] $-\bruch{1}{x}$ [/mm] oder [mm] $+\bruch{x+1}{x^2}$ [/mm] .

Du brauchst einen gebrochen-rationalen Term, bei welchem der Nennergrad echt größer ist als der Zählergrad.


Gruß vom
Roadrunner

Bezug
                                
Bezug
Asymptote: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:12 Mi 09.05.2012
Autor: Luiii

wäre das dann also 3x+ (x+1)/x² ?

Bezug
                                        
Bezug
Asymptote: eine mögliche Lösung
Status: (Antwort) fertig Status 
Datum: 15:13 Mi 09.05.2012
Autor: Roadrunner

Hallo!


> wäre das dann also [mm] 3x+(x+1)/x^2 [/mm] ?  

[ok] Das wäre eine mögliche Lösung.


Gruß vom
Roadrunner

Bezug
                                                
Bezug
Asymptote: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:19 Mi 09.05.2012
Autor: Luiii

Super,vielen Dank :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]