matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenAuf Erzeugendensystem prüfen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - Auf Erzeugendensystem prüfen
Auf Erzeugendensystem prüfen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auf Erzeugendensystem prüfen: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:55 Mo 15.11.2010
Autor: julig86

Aufgabe
Es seien n [mm] \in \IN [/mm] und [mm] e_1...e_n [/mm] die Standardbasis des [mm] K^n. [/mm] Untersuchen Sie, welche der folgenden Mengen von Vektoren linear unabhängig, ein Erzeugendensystem, eine Basis oder nichts dergleichen sind. Begründen Sie Ihre Antwort.

Aufgabenteil b) [mm] {e_1, e_1+e_2,e_1+e_2+e_3,...,e_1+e_2+...e_n} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hey also ich komme irgendwie nicht weiter. Zuerst einmal habe ich auf lineare Unabhängigkeit getestet und die Sache wie folgt umgeschrieben:

[mm] \vektor{\lambda_1+...+\lambda_n \\ \lambda_2+...+\lambda_n \\ ... \\ \lambda_n} [/mm]

Das stellt also meine Vorschrift zum Erzeugen anderer Vektoren dar.
Setze ich das = 0,bekomme ich nach einigen Umformungen, dass wir lineare Unabhängigkeit haben.

Wie genau überprüfe ich denn nun, ob auch ein EZS vorliegt? Ich mein, im Hinterkopf zu haben, dass wir bei [mm] K^n [/mm] ja n-viele Vektoren haben, und aus der l.Unabh. direkt das EZS folgt, weiss aber nicht mehr welcher Satz das war...

Danke im Vorraus !!
LG
Julian

        
Bezug
Auf Erzeugendensystem prüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Mo 15.11.2010
Autor: fred97

Ich vermute, du hast folgenden Ansatz gehabt:

      $0= [mm] (\lambda_1+\lambda_2+...+\lambda_n)e_1+ (\lambda_2+\lambda_3+...+\lambda_n)e_2+ [/mm] ...+ [mm] (\lambda_{n-1}+\lambda_n)e_{n-1}+\lambda_ne_n$ [/mm]

Da [mm] e_1, ...,e_n [/mm] lin unabh. sind, folgt sukzessive

[mm] \lambda_n=0 [/mm]

[mm] \lambda_{n-1}+\lambda_n=0 [/mm]
.
.
.
.
Hilft das ?

FRED

Bezug
                
Bezug
Auf Erzeugendensystem prüfen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:43 Fr 19.11.2010
Autor: julig86

Jap, habs rausbekommen, Danke dir :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]