matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenAufgabe Gerade Punkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Geraden und Ebenen" - Aufgabe Gerade Punkt
Aufgabe Gerade Punkt < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe Gerade Punkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:11 Sa 10.04.2010
Autor: Nikecounter

Aufgabe
Gegeben Punkt A(2/1/1) und gerade [mm] g:x=\pmat{ 1 \\ 1 \\ 1 } +\lambda \pmat{ 1 \\ 0 \\ -1 } [/mm]

1 bestimmen Sie parameter und normalform der ebene E.

2 Stellen Sie die Normalengleichung der Ebene F auf, die g enthält und auf E senkrecht steht.

Also Aufgabe 1 hab ich Problemlos hinbekommen, da ist der 2 richtungsvektor einfach der aufpunkt minus Punkt A...

Zu 2 hab ich jetzt keine wirkliche Idee, die normalvektoren müssten halt mit Skalarmul. Null ergeben, aber wie komm ich jetzt auf den Richtungsvektor???

Danke

        
Bezug
Aufgabe Gerade Punkt: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Sa 10.04.2010
Autor: abakus


> Gegeben Punkt A(2/1/1) und gerade [mm]g:x=\pmat{ 1 \\ 1 \\ 1 } +\lambda \pmat{ 1 \\ 0 \\ -1 }[/mm]

GESUCHT?
(eventuell eine Ebene, die g enthält und durch A geht?)

>  
> 1 bestimmen Sie parameter und normalform der ebene E.
>
> 2 Stellen Sie die Normalengleichung der Ebene F auf, die g
> enthält und auf E senkrecht steht.
>  Also Aufgabe 1 hab ich Problemlos hinbekommen, da ist der
> 2 richtungsvektor einfach der aufpunkt minus Punkt A...
>
> Zu 2 hab ich jetzt keine wirkliche Idee, die normalvektoren
> müssten halt mit Skalarmul. Null ergeben, aber wie komm
> ich jetzt auf den Richtungsvektor???

Hallo,
wenn du die Ebenengleichung zu 1) in der Form ax+by+cz=d hast, so ist
[mm] \vektor{a\\b\\c} [/mm] ein Normalenvektor der Ebene (und somit ein Richtugsvektor einer darauf senkrecht stehenden Ebene. Da die zweite Ebene auch g enthalten soll, hast du für sie noch einen zweiten Richtungsvektor.
Gruß Abakus

>  
> Danke


Bezug
                
Bezug
Aufgabe Gerade Punkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Sa 10.04.2010
Autor: Nikecounter

Alles klar, habs gerechnet und passt Danke!

Hätte noch eine kurze Frage zu einer Anderen Aufgabe und will nicht extra neue Frage aufmachen.

Wenn eine Ebene F die x1 Achse enthält und senkrecht auf einer Ebene E steht. Das ist ja dasselbe wie bei der Aufgabe eben, dass der Normalvektor von E ein Richtungsvektor ist und die x1 Achse ist ebenfalls ein Richtungsvektor...?

Also wenn ich die die Gleichung von F in Normalform will nehm ich für den Normalvektor der Ebene F das Kreuzprodukt von x1 Achse und dem Normalvektor der Ebene F und was ist dann a ( [mm] n\circ(x-a) [/mm]  )?

Hoffe das ist einigermaßen verständlich.

Danke

Bezug
                        
Bezug
Aufgabe Gerade Punkt: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Sa 10.04.2010
Autor: abakus


> Alles klar, habs gerechnet und passt Danke!
>  
> Hätte noch eine kurze Frage zu einer Anderen Aufgabe und
> will nicht extra neue Frage aufmachen.
>  
> Wenn eine Ebene F die x1 Achse enthält und senkrecht auf
> einer Ebene E steht. Das ist ja dasselbe wie bei der
> Aufgabe eben, dass der Normalvektor von E ein
> Richtungsvektor ist und die x1 Achse ist ebenfalls ein
> Richtungsvektor...?

Ja.

>  
> Also wenn ich die die Gleichung von F in Normalform will
> nehm ich für den Normalvektor der Ebene F das Kreuzprodukt
> von x1 Achse und dem Normalvektor der Ebene F und was ist
> dann a ( [mm]n\circ(x-a)[/mm]  )?

Wenn die x-Achse in der Ebene liegt, gilt zweierlei:
1) Die Form ax+by+cz=d vereinfacht sich zu by+cz=d. (Das würde bereits gelten, wenn die x-Achse nur parallel zur Ebene F wäre.)
2) Da auch der Ursprung ein Punkt der x-Achse ist, gilt sogar by+cz=0
Gruß Abakus

>  
> Hoffe das ist einigermaßen verständlich.
>  
> Danke


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]