matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesAufgabe richtig?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Aufgabe richtig?
Aufgabe richtig? < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe richtig?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:56 So 28.06.2009
Autor: pittster

Aufgabe
http://www.uni-math.gwdg.de/skripten/Aglaskript/agla.pdf (Seite 33, Aufgabe 5)

Tut mir leid, dass ich nur die Adresse zu dem Skript mit den Übungsaufgaben dort oben kopiert habe. Aber ich wüssten nicht, wie ich das aus dem PDF rausbekommen könnte.

Das habe ich erarbeitet. Ist das so korrekt?


(G0):  Weil [mm] $\mathbb{R}$ [/mm] ein Körper ist, ist die Situation für die rellen Zahlen klar. Zu zeigen ist also nur noch, dass für kein $a [mm] \circ [/mm] b = -1$ ($a,b [mm] \in [/mm] G) gilt.

Da $a [mm] \circ [/mm] b = a + b + ab$ gilt, lässt sich stattdessen auch $a+(a+1)b$ schreiben.

Der beweis erfolgt also über das Auflösen der Gleichung.

a+(a+1)b=-1

(a+1)b=-(a+1)

Daraus folgt, dass b = -1, was durch $a,b [mm] \in [/mm] G$ ausgeschlossen wurde, wodurch die forderung G0 erfüllt ist.


(G1): Diese Bedingung erhält man durch ausklammern von:

$(a [mm] \circ [/mm] b) [mm] \circ [/mm] c= (a+b+ab)+c+(a+b+ab)c = a [mm] \circ [/mm] (b [mm] \circ [/mm] c) = a+(b+c+bc)+a(a+b+bc)= a+b+c+bc+ab+ac+abc$

(G2): Dieses Element ist 0, denn: $a [mm] \circ [/mm] 0 = a+0+a0=a$

(G3): Nachdem ich das neutrale Element bereits identifiziert habe, kann gezeigt werden, dass $a [mm] \circ [/mm] b = 0$, $b= [mm] a^{-1}$ [/mm]

[mm] $a^{-1}=-\frac{a}{a+1}$ [/mm]

$a [mm] \circ \frac{a}{a+1} [/mm] = a - [mm] \frac{a}{a+1} [/mm] - [mm] \frac{a}{a+1} [/mm] a = [mm] \frac{a^2+a}{a+1}-\frac{a}{a+1}-\frac{a}{a+1} \frac{a}{1}$ [/mm]



Zum Schluss noch das Auflösen von x bei $5 [mm] \circ [/mm] x [mm] \circ [/mm] 6 = 17$

Wegen G2 ist $5 [mm] \circ [/mm] 6 [mm] \circ [/mm] x = 17 = 41 [mm] \circ [/mm] x$

Dies lässt sich wie eine normale Gleichung auflösen und ergibt $x = [mm] -\frac{4}{7}$. [/mm]


        
Bezug
Aufgabe richtig?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:13 Mo 29.06.2009
Autor: fred97

Sieht alles sehr gut aus

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]