matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungAufleitung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Aufleitung
Aufleitung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufleitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 Di 24.08.2010
Autor: zitrone

Hallo:),

ich hab wieder en paar Aufgaben zu dem Thema Aufleitungen bekommen. Diese sind etwas kniffliger, daher bin ich mir recht unsicher, ob ich auch das richtige getan habe.Könnte sich das bitte mal jemand ansehen und mir bei Fehlern helfen?

1)
[mm] \bruch{x^{3}+2x}{x^{4}} [/mm]
[mm] =\bruch{x^{3}}{x^{4}}+\bruch{2x}{x^{4}} [/mm]

[mm] =x^{3}*x^{-4}+ 2x*x^{-4} [/mm]

F(x)= [mm] \bruch{1}{4}x^{4}*(-\bruch{1}{3x^{3}})+x^{2}*(-\bruch{1}{3x}) [/mm]


2)
f(x)= [mm] \bruch{x^{3}-1}{2x^{2}} [/mm]

[mm] =\bruch{x^{3}}{2x^{2}}-\bruch{1}{2x^{2}} [/mm]

[mm] =x^{3}*2x^{-2} [/mm] - [mm] 1*2x^{-2} [/mm]

F(x)= [mm] \bruch{1}{4}x^{4}*(-\bruch{2}{x})+\bruch{2}{x^{2}} [/mm]

3)
f(x)= [mm] \bruch{1+x+x^{3}}{3x^{3}} [/mm]

[mm] =\bruch{1}{3x^{3}}+ \bruch{x}{3x^{3}}+\bruch{x^{3}}{3x^{3}} [/mm]


F(x)= [mm] -\bruch{1}{6x^{2}}+\bruch{-x^{-1}}{3} [/mm]

lg zitrone

        
Bezug
Aufleitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 Di 24.08.2010
Autor: Steffi21

Hallo, bitte benutze nicht das Unwort "Aufleitung", du bestimmst die Stammfunktion, du hast korrekt erkannt, deine Funktionen in einzelne Summanden aufzuspalten, in Nr. 1) kannst du dann kürzen

[mm] f(x)=\bruch{x^{3}}{x^{4}}+\bruch{2x}{x^{4}}=\bruch{1}{x^{1}}+\bruch{2}{x^{3}}=\bruch{1}{x}+2x^{-3} [/mm]

die Stammfunktion vom 1. Summanden sollte dir (schon) bekannt sein, beim 2. Summanden benutze

[mm] \integral_{}^{}{x^{n} dx}=\bruch{1}{n+1}x^{n+1}+C [/mm] mit [mm] n\not=-1 [/mm]

dann schaffst du auch die anderen Aufgaben

Steffi


Bezug
                
Bezug
Aufleitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:48 Mi 25.08.2010
Autor: zitrone

Hallo,

Danke dir!:) Jetzt ist es um einiges einfacher:D

LG zitrone

Bezug
                
Bezug
Aufleitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:57 Mi 25.08.2010
Autor: zitrone

Hallo,

hab da aber noch eine Frage zu einer Aufgabe:

f(x)= [mm] \bruch{(2x+1)^{2}+1}{x} [/mm] = [mm] \bruch{2x+1}{x}+\bruch{1}{x} [/mm]

= [mm] \bruch{2+1}{1}+\bruch{1}{x}=3+\bruch{1}{x} [/mm]

F(x)=3x [mm] +1x^{-0} [/mm]


richtig so?

lg zitrone

Bezug
                        
Bezug
Aufleitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Mi 25.08.2010
Autor: Pappus

Guten Abend!

Du schreibst:

[#000000]Hallo,
hab da aber noch eine Frage zu einer Aufgabe:

f(x)= [url=teximginfo?id=1547849][/#000000]


Leider hast Du übersehen, dass im Zähler des ersten Bruches ein Quadrat steht, welches Du bei Deinen weiteren Rechnungen unterschlagen hast.

Also erst die Klammer im Zähler ausmultiplizieren, dann kürzen und zusammenfassen.

Salve.

Pappus


Bezug
                        
Bezug
Aufleitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Mi 25.08.2010
Autor: Pappus

Guten Abend,

ich hatte eben den neuen Editor ausprobieren wollen, was aber offensichtlich nicht so gut gegklappt hat. Also noch einmal:

> Hallo,
>  
> hab da aber noch eine Frage zu einer Aufgabe:
>  
> f(x)= [mm]\bruch{(2x+1)^{2}+1}{x}[/mm] =
> [mm]\bruch{2x+1}{x}+\bruch{1}{x}[/mm]
>  
> = [mm]\bruch{2+1}{1}+\bruch{1}{x}=3+\bruch{1}{x}[/mm]

...

Irgendwie hast Du übersehen, dass im Zähler des ersten Bruches noch ein Quadrat stehen müsste:

f(x)= [mm]\bruch{(2x+1)^{2}+1}{x}[/mm] =  [mm]\bruch{\red{(2x+1)^2}}{x}+\bruch{1}{x}[/mm]

Erst die Klammer ausmultiplizieren, zusammenfassen und dann weiterrechnen.

Salve

Pappus

Bezug
                                
Bezug
Aufleitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:10 Mi 25.08.2010
Autor: zitrone

Hallo,

Oh, das hab ich übersehen!^^"

Ist es dann so richtig?

f(x)= [mm] \bruch{(2x+1)^{2}+1}{x} [/mm]  = [mm] \bruch{4x^{2}+4x+3}{x}= [/mm]
[mm] \bruch{4x^{2}}{x}+\bruch{4x}{x}+ \bruch{3}{x} [/mm]

lg zitrone

Bezug
                                        
Bezug
Aufleitung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Mi 25.08.2010
Autor: Kroni

Hi,

es gilt doch:

[mm] $(2x+1)^2+1 [/mm] =  [mm] 4x^2+4x+1+1 [/mm] = [mm] 4x^2+4x+2$ [/mm]

du hast am Ende aber ne $3$ da stehen. Wenn du also die $3$ durch ne $2$ austauschst, passt es.

LG

Kroni


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]