matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAuflösen nach X eines Logarith
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - Auflösen nach X eines Logarith
Auflösen nach X eines Logarith < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auflösen nach X eines Logarith: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:40 Mi 05.03.2008
Autor: nixwiss

Hallo,

wie löse ich das nach X auf:
[mm] ln(e^x+2)=3[/mm]

So kann ich's:
[mm]ln(e^x)=3[/mm] = [mm]x*ln(e)=3[/mm] und damit [mm]x=3[/mm]
Aber mit der [mm]+2[/mm] in der Klammer komm' ich nicht klar.

Danke schonmal!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Auflösen nach X eines Logarith: Antwort
Status: (Antwort) fertig Status 
Datum: 11:45 Mi 05.03.2008
Autor: Kueken

Hi!

Ich hoffe ich erzähl dir jetzt keinen vom Pferd. =)
erstmal die ganze Gleichung e hoch nehmen
dann bleibt [mm] e^{x} [/mm] + 2 = [mm] e^{3} [/mm]
Jetzt die zwei rüberschaffen.
[mm] e^{x}= e^{3} [/mm] - 2
Jetzt wieder den ln ziehen
x= [mm] ln(e^{3}-2) [/mm]

LG
Kerstin

Bezug
                
Bezug
Auflösen nach X eines Logarith: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 11:56 Mi 05.03.2008
Autor: Andi

Hi Kerstin,

> Ich hoffe ich erzähl dir jetzt keinen vom Pferd. =)

Nein .... war mathematisch korrekt! :-)

>  erstmal die ganze Gleichung e hoch nehmen

Also in einer Antwort hätte ich auch "e hoch nehmen" geschrieben.
Aber mathematisch  wendest auf beiden Seiten der Gleichung die Exponentialfunktion an, welche die Umkehrfunktion zur Ln-Funktion ist.

>  dann bleibt [mm]e^{x}[/mm] + 2 = [mm]e^{3}[/mm]
>  Jetzt die zwei rüberschaffen.
>  [mm]e^{x}= e^{3}[/mm] - 2
>  Jetzt wieder den ln ziehen
>  x= [mm]ln(e^{3}-2)[/mm]

[ok]

Viele Grüße,
Andi

Bezug
                        
Bezug
Auflösen nach X eines Logarith: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 12:07 Mi 05.03.2008
Autor: Kueken

na hauptsache ich weiß was ich tue *g*
und es kommt raus was ich will ... hihi

Bezug
                
Bezug
Auflösen nach X eines Logarith: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:15 Mi 05.03.2008
Autor: nixwiss

Alles klar, danke. Du hast mir sehr geholfen.

Bezug
        
Bezug
Auflösen nach X eines Logarith: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:57 Mi 05.03.2008
Autor: nixwiss

Hallo nochmal,

ich dachte, ich hätt's, aber das Problem zieht Kreise...

Wie löse ich denn das nach x auf:
[mm]\ln(e^x+2x)=3[/mm]

nochmals Danke!





Bezug
                
Bezug
Auflösen nach X eines Logarith: Antwort
Status: (Antwort) fertig Status 
Datum: 14:29 Mi 05.03.2008
Autor: luis52

Moin nixwiss,

es gibt Fragestellungen, die keine explizite Loesungen haben. Die
Gleichung $ [mm] \ln(e^x+2x)=3 [/mm] $ gehoert dazu. Dann kommt man vielfach mit
numerischen Verfahren wie dem []Bisektionsverfahren weiter.
Betrachte die Funktion   $ [mm] f(x)=\ln(e^x+2x)-3 [/mm] $. Es gilt
$f(0)=-3$ und $f(3)=0.26$. Da $f$ stetig ist, muss nach dem
Zwischenwertsatz eine Nullstelle der Funktion in (0,3) existieren. Das
Bisektionsverfahren liefert einen Algorithmus zu deren Bestimmung.

vg
Luis
                        

Bezug
                        
Bezug
Auflösen nach X eines Logarith: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:52 Mi 05.03.2008
Autor: nixwiss

Danke, Du hast meinen Tag gerettet.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]