matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Auflösung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Auflösung
Auflösung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auflösung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:23 Mo 05.02.2007
Autor: MarekG

Aufgabe
  [mm] \bruch{a+1}{a-1}-1 [/mm] = a+1-(a-1)


  1+ [mm] \bruch{a+1}{a-1} [/mm] = a-1+a+1







Kann mir jemand genau aufzeigen wie man bei den beiden Termen zu dem Ergebis kommt???
Ich weiß dass das rivhtig ist aber wie wird das aufgelöst.
Ich  danke euch schon mal

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Auflösung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 Mo 05.02.2007
Autor: wieZzZel

Hallo

[mm] \bruch{a+1}{a-1}-1=a+1-(a-1) [/mm]

also fasse die rechte Seite zusammen und addiere beide Seiten mit 1

[mm] \br{a+1}{a-1}=3 [/mm]

jetzt multipliziere mit (a-1) (schreibe noch hin, dass [mm] a\not= [/mm] 1, denn sonst würdest du durch Null dividieren ==> verboten)

a+1=3a-3

beide Seiten -a+3

4=2a

durch 2

a=2


2. Aufgabe analog

[mm] \br{a+1}{a-1}=2a-1 [/mm]

a+1=(2a-1)(a-1)

[mm] a+1=2a^2-3a+1 [/mm]

[mm] 0=2a^2-4a [/mm]

0=2a(a-2)

[mm] a_1=0 [/mm] und [mm] a_2=2 [/mm]  es gibt 2 Lösungen

Tschüß sagt Röby

Bezug
                
Bezug
Auflösung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:41 Mo 05.02.2007
Autor: MarekG

Hallo Wiezzel
Naja eigetlich wollte ich nicht wissen was a ist sondern wie man von den einem Term auf den anderen kommt ..also

[mm] \bruch{a+1}{a-1}-1 [/mm]

vereinfachen.
Danke

Bezug
                        
Bezug
Auflösung: gleichnamig machen
Status: (Antwort) fertig Status 
Datum: 16:02 Mo 05.02.2007
Autor: Roadrunner

Hallo Marek!


Zum Zusammenfassen musst Du die beiden Term zunächst gleichnamig machen; sprich: auf den Hauptnenner erweitern:

[mm]\bruch{a+1}{a-1}-1 \ = \ \bruch{a+1}{a-1}-\bruch{a-1}{a-1} \ = \ \bruch{a+1-(a-1)}{a-1} \ = \ \bruch{a+1-a+1}{a-1} \ = \ ...[/mm]


Gruß vom
Roadrunner


Bezug
        
Bezug
Auflösung: Rückfrage/ Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:04 Mo 05.02.2007
Autor: XsunnyX

Kann es sein, dass deine Ergebnisse nur die Ergebnisse des Zählers sind und der Nenner (Hauptnenner) fehlt?!
Denn ich würde so vorgehen:

[mm] \bruch {a+1} {a-1} - 1 = [/mm]
[mm] = \bruch {a+1} {a-1} - \bruch {a-1} {a-1} [/mm] HAUPTNENNER!

= [mm] \bruch {a+1- (a-1)} {a-1} = \bruch {a+1-a+1} {a-1} = \bruch {1} {a-1} [/mm]
Hier siehst du auch im Zähler deine "Lösung"
Bei der anderen Gleichung funktioniert es genauso: Erst Hauptnenner suchen, dann den Bruch mit diesem erweitern, auf einen Bruchstrich schreiben und Zusammenfassen!
Lg, ich hoffe ich konnte dir weiter helfen!


Bezug
        
Bezug
Auflösung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:48 Mo 05.02.2007
Autor: MarekG

Also ich habe folgendes Problem.
Ich habe ein Term zu vereinfachen der so aussieht:

[mm] \bruch{\bruch{a+1}{a-1}-1}{1+\bruch{a+1}{a-1}} [/mm]

und bei der Lösung, die habe ich schon einfach mal nachgeschaut kommt dann:

[mm] \bruch{\bruch{a+1}{a-1}-1}{1+\bruch{a+1}{a-1}} [/mm] = [mm] \bruch{a+1-(a-1)}{a-1+a+1} [/mm]

und mir ist leider nicht klar wie man von:
[mm] \bruch{\bruch{a+1}{a-1}-1}{1+ \bruch{a+1}{a-1}} [/mm]

auf

[mm] \bruch{a+1-(a-1)}{a-1+a+1} [/mm]

kommt...

diesen term kann man ja noch weiter vereinfachen dann kommt man am ende ja auf:
[mm] \bruch{1}{a} [/mm]

nur diese einzige stelle ist mir völlig unklar.
wie ihr sieht bin ich schon sehr lang aus der schule raus und ich muß das ganze mal wiederholen was nicht gerade einfach ist.
danke noch mal für eure Mühen.




Bezug
                
Bezug
Auflösung: erweitern
Status: (Antwort) fertig Status 
Datum: 16:56 Mo 05.02.2007
Autor: Roadrunner

Hallo Marek!


Erweitere doch einfach mal Deinen Doppelbruch mit $(a-1)_$ ; schon entfällt der Doppelbruch und Du hast Deinen nächsten genannten Term.


Gruß vom
Roadrunner


Bezug
                        
Bezug
Auflösung: ergebnis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:02 Mo 05.02.2007
Autor: MarekG

Hallo
Ja ich habe jetzt gepeilt.Brüche dividiert man doch indem man sie mit dem Kehrwert multipliziert und somit fällt ja das a-1 weg..boah voll auf dem schlauch gestanden....danke für eure mühen..Es war bestimmt nicht die letzte Frage von mir..
Bye


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]