matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAusgleichsparabel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Ausgleichsparabel
Ausgleichsparabel < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ausgleichsparabel: Frage
Status: (Frage) beantwortet Status 
Datum: 17:49 Mo 24.01.2005
Autor: Schorsch81

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Aufgabe:


Ein Auto vollzieht eine Vollbremsung bis zum Stillstand. Während des Bremsvorganges mißt man vier
Mal im Abstand von jeweils einer Sekunde die zurückgelegte Strecke: (1m, 46m, 80m, 109m). Die erste
Messung war zum Zeitpunkt t =0s. Es ist davon auszugehen, daß Meßfehler aufgetreten sind.Wir nehmen
auch an, daß die Galileische Bewegungsformel s(t) =  [mm] s_{0} [/mm] + [mm] v_{0}t [/mm] +  [mm] \bruch{1}{2}a_{0}t^{2}, [/mm] mit (konstanter) Anfangsstrecke
[mm] s_{0}, [/mm] (konstanter) Anfangsgeschwindigkeit [mm] v_{0} [/mm] und konstanter Beschleunigung [mm] a_{0} [/mm] die Situation genau genug
beschreibt. Bestimme zu den obigen Meßwerten gemäß der Methode der besten Approximation die Ausgleichsparabel
s(t). Wie schnell war das Auto zum Zeitpunkt der ersten Messung und wann und wo wird
das Auto voraussichtlich zum Stillstand kommen?


Kann mir vielleicht jemand ein paar Tipps oder die Lösung dazu sagen? Wäre echt nett!
Danke...

        
Bezug
Ausgleichsparabel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 Mo 24.01.2005
Autor: FriedrichLaher

Hallo, Schorsch81

ich nehme an, es darf [mm] $s_0 [/mm] = 0$ angenommen werden .

Dann bestimmen wir $v = [mm] v_0, [/mm] a = [mm] a_0$, [/mm] $s(t) = [mm] v*t+\frac{1}{2}a*t^2$ [/mm] so
daß
$S = [mm] \sum _{i=1}^4 [/mm] (s(i) - [mm] x_i)^2$ [/mm] so daß S abhängig von v, a
minimal wird ( Mean Square Method ).

[mm] $\frac{\partial S}{\partial v} [/mm] = [mm] \sum _{i=1}^4 [/mm] 2*(s(i) - [mm] x_i)*t_i$ [/mm]
[mm] $\frac{\partial S}{\partial a} [/mm] = [mm] \sum _{i=1}^4 [/mm] 2*(s(i) - [mm] x_i)*\frac{1}{2}t_i [/mm] ^2$
als omüssen
für v: $2 * [mm] \left( v*(1+4+9+16)+\frac{a}{2}(1+8+27+64) -(1*1+2*46+3*80+4*109\right) [/mm] = 0$ und
für a: $2 * [mm] \left( v*(1+8+27+64)+\frac{a}{2}(1+2^4+3^4+4^4) -(1^2*1+2^2*46+3^2*80+4^2*109)\right) [/mm] = 0$
gelten

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]