matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikAussagenlogik - Erfüllbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Diskrete Mathematik" - Aussagenlogik - Erfüllbarkeit
Aussagenlogik - Erfüllbarkeit < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagenlogik - Erfüllbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:07 Di 17.11.2009
Autor: Sabine.

Aufgabe
Zeigen Sie:

Eine aussagenlogische Formel F ist erfüllbar, falls ihre Verneinung !F ein Widerspruch
ist.

Hallo

Das Ganze ist ja eigentlich klar, nur wie schreibe ich das korrekt auf?

Mein Versuch:

!F ist ein Widerspruch
-> die Formel !F ist niemals true
-> die Formel !F ist immer false
-> wenn !F immer false ist, ist F immer true
-> die Formel F ist mindestens ein mal true
-> F ist erfüllbar

reicht das so?

Liebe Grüße
Sabine

        
Bezug
Aussagenlogik - Erfüllbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 07:21 Mi 18.11.2009
Autor: Gonozal_IX

Hallo Sabine,

vorweg: Wie habt ihr denn "erfüllbar" und "Widerspruch" definiert.
In welchem Zusammenhang sollst du das zeigen, bist du wirklich (wie dein Mathematischer Hintergrund angibt) Mathe-LK 12 oder ist das eine Logik I - Vorlesung?

Ich frage das alles, weil wenn man es logisch "sauber" aufschreibt, gibt es kein "true" oder "false" in der Logik, sondern man kann das korrekt herleiten, dazu benötigt man aber ein paar Grundlagen, und die Frage ist, ob du diese hast.

MFG,
Gono.

Bezug
                
Bezug
Aussagenlogik - Erfüllbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:23 Mi 18.11.2009
Autor: Sabine.

erfüllbar bedeutet, die Formel hat mindestens eine gültige Belegung

Widerspruch bedeutet, die Formel hat keine gülte Belegung (wird niemals true)

Der Backgroud ist veraltet, das muss ich mal aktualisieren, ich habe die Vorlesung "Diskrete Mathematik" und wir behandeln dabei gerade die Aussagenlogik

Bezug
                        
Bezug
Aussagenlogik - Erfüllbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:45 Mi 18.11.2009
Autor: Gonozal_IX

Hiho,
> erfüllbar bedeutet, die Formel hat mindestens eine
> gültige Belegung
>  
> Widerspruch bedeutet, die Formel hat keine gülte Belegung
> (wird niemals true)

Ok, dann schreib das doch mal hin, dann stehts direkt da.

Keine gültige Belegung, d.h. für JEDE Belegung B gilt $B(!F) = 0$ (jenachdem, wie ihr das schreibt), nun noch Rechenregel für Belegungen anwenden um das !F in F umzuwandeln und du bist fertig :-)

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]