matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAutonome Differentialgleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Autonome Differentialgleichung
Autonome Differentialgleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Autonome Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:16 Mo 12.12.2011
Autor: Harris

Aufgabe
Maximal fortgesetzte Lösungen von
[mm] y'=\exp(y)\cdot\sin(y) [/mm]
sind bereits auf ganz [mm] $\IR$ [/mm] definiert.


Hi!

Ich brauche hier einen geeigneten Ansatz.
Anfangs dachte ich, dass es sich gut mit dem Satz über Unter- und Oberfunktionen lösen lässt.

Die DGLs
[mm] y_1'=\exp(y_1) [/mm]
[mm] y_2'=-\exp(y_2) [/mm]
würden ihren Dienst leisten, jedoch gilt hier
[mm] y_1(t)=-\log(-t+c_1) [/mm]
[mm] y_2(t)=-\log(t+c_2) [/mm]
mit positiven Konstanten [mm] $c_i$. [/mm]

Wären nun beide auf ganz [mm] $\IR$ [/mm] definiert, so wüsste ich, dass die Lösung der DGL von oben zwischen den Lösungen verlaufen müsste und somit den Definitionsbereich [mm] $\IR$ [/mm] erben würde. Aber sie sind eben nicht auf ganz [mm] $\IR$ [/mm] definiert - blöd.

Was kann man hier nun machen? Kann man weiterhin die Information verwenden, dass die Nulllösung eine Lösung ist und somit die Funktion ihr Vorzeichen nicht ändern kann?
Weiterhin habe ich die Information, dass es sich um eine autonome Differentialgleichung handelt, noch nicht verwendet...

Bin für jeden Hinweis dankbar!
Gruß, Harris

        
Bezug
Autonome Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:35 Mo 12.12.2011
Autor: fred97

Edit: hier stand Unfug !

FRED

Bezug
                
Bezug
Autonome Differentialgleichung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:18 Mo 12.12.2011
Autor: Harris

Hallo!

Danke für deine Antwort, aber ich habe hierzu noch eine Frage:

Angenommen, ich hätte die Differentialgleichung
[mm] $y'=f(x,y)=e^y$. [/mm]
Dann ist auch hier $f$ stetig und genügt bezüglich $y$ einer Lipschitzbedingung, da stetig partiell differentierbar nach $y$.

Warum liefert diese Version des Satzes von Picard-Lindelöf für die vorherige Differentialgleichung die Existenz auf [mm] $\IR$, [/mm] wobei für diese Differentialgleichung die Existenz auf [mm] $\IR$ [/mm] nicht folgen darf?

Und welche Version meinst du? Ich kenne nur die, dass die partielle Ableitung nach $y$ beschränkt sein soll, woraus die Existenz auf ganz [mm] $\IR$ [/mm] folgt...

Gruß, Harris

Bezug
                        
Bezug
Autonome Differentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:29 Mo 12.12.2011
Autor: fred97


> Hallo!
>  
> Danke für deine Antwort, aber ich habe hierzu noch eine
> Frage:
>  
> Angenommen, ich hätte die Differentialgleichung
>  [mm]y'=f(x,y)=e^y[/mm].
>  Dann ist auch hier [mm]f[/mm] stetig und genügt bezüglich [mm]y[/mm] einer
> Lipschitzbedingung, da stetig partiell differentierbar nach
> [mm]y[/mm].
>  
> Warum liefert diese Version des Satzes von Picard-Lindelöf
> für die vorherige Differentialgleichung die Existenz auf
> [mm]\IR[/mm], wobei für diese Differentialgleichung die Existenz
> auf [mm]\IR[/mm] nicht folgen darf?
>  
> Und welche Version meinst du? Ich kenne nur die, dass die
> partielle Ableitung nach [mm]y[/mm] beschränkt sein soll, woraus
> die Existenz auf ganz [mm]\IR[/mm] folgt...
>  
> Gruß, Harris

hallo Harris,

meine obige Antwort war Unfug ! Tut mir leid. Ich werde über eine (hoffentlich) korrekte Antwort nachdenken.

FRED


Bezug
                                
Bezug
Autonome Differentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:23 Mo 12.12.2011
Autor: Harris

Eventuell führt ja die Erkenntnis zum Ziel, dass die Ableitung in [mm] $[i\pi,(i+1)\pi]$ [/mm] ein Maximum in [mm] $(i\pi,(i+1)\pi)$ [/mm] besitzt.

Das Problem bei Differentialgleichungen $x'=f(x)$, deren Lösungen eine vertikale Asymptote besitzen, ist ja meist, dass das Maximum von $f(x)$ in einem abgeschlossenen Intervall $[a,b]$ stets am Rand davon liegt.

Gruß, Harris

Bezug
                        
Bezug
Autonome Differentialgleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mi 14.12.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]