matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperBahnen bei zykl. Permutationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Bahnen bei zykl. Permutationen
Bahnen bei zykl. Permutationen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bahnen bei zykl. Permutationen: Idee
Status: (Frage) überfällig Status 
Datum: 20:15 Di 22.05.2007
Autor: elisabeth0

Aufgabe
Es sei [mm] n\in [/mm] N, und [mm] a=a_1*a_2*..a_t \in S_n [/mm] ein Produkt von zyklischen Permutationen, diese seien zueinander "fremd" in dem Sinne, dass [mm] a_i [/mm] und [mm] a_j [/mm] keine gemeinsame Ziffer enthalten. Die von a erzeugte Untergruppe
<a> = [mm] \{a^{k}|k \in \IZ\} [/mm] operiert auf X={1,...,n}. Welches sind die Bahnen dieser Aktion?
Kehren Sie diese Beobachtung um. Ist a [mm] \in S_3, [/mm] so lehren die Bahnen der Aktion von <a> auf X, dass und wie man a als Produkt zueinander fremder zyklischer Permutationen schreiben kann. Inwieweit ist diese Zerlegung eindeutig?

Hi,
ich habe mit dieser Aufgabe noch FOrmulierungsschwierigkeiten.
Also: Diese elementfremden Permutationen ergeben ja multipliziert keine große Veränderung, da keine auf das andere zeigt, ist zB (1 3) * (4 2) einfach (1 3)(4 2).
Wenn ich dies nun auf X anwende, zB auf 1, so erhalte ich ja 3, und dann wieder 1, oder? Bei 2 würde es auf 4 gehen, und dann wieder zurück?

Also im Prinzip enthält die Bahn von x den Zyklus, bei dem x "erwischt" wird?
Und umgekehrt kann ich einfach schreiben, dass man bei den Bahnen direkt die Zyklen ablesen kann. Eindeutig ist das, weil die Zyklenmultiplikation kommutativ? ist, solange man eben "fremd" bleibt - richtig?

Aber wie soll ich das schreiben, so dass das auch mein Korrekteur akzeptiert?

Danke für die Hilfe
Lizzy

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bahnen bei zykl. Permutationen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:24 Mi 23.05.2007
Autor: statler

Gute Morgen Elisabeth!

> Es sei [mm]n\in[/mm] N, und [mm]a=a_1*a_2*..a_t \in S_n[/mm] ein Produkt von
> zyklischen Permutationen, diese seien zueinander "fremd" in
> dem Sinne, dass [mm]a_i[/mm] und [mm]a_j[/mm] keine gemeinsame Ziffer
> enthalten. Die von a erzeugte Untergruppe
> <a> = [mm]\{a^{k}|k \in \IZ\}[/mm] operiert auf X={1,...,n}. Welches
> sind die Bahnen dieser Aktion?
>  Kehren Sie diese Beobachtung um. Ist a [mm]\in S_3,[/mm] so lehren
> die Bahnen der Aktion von <a> auf X, dass und wie man a als
> Produkt zueinander fremder zyklischer Permutationen
> schreiben kann. Inwieweit ist diese Zerlegung eindeutig?

> Also: Diese elementfremden Permutationen ergeben ja
> multipliziert keine große Veränderung, da keine auf das
> andere zeigt, ist zB (1 3) * (4 2) einfach (1 3)(4 2).
> Wenn ich dies nun auf X anwende, zB auf 1, so erhalte ich
> ja 3, und dann wieder 1, oder? Bei 2 würde es auf 4 gehen,
> und dann wieder zurück?

Es gibt auch längee zyklische Permutationen, z. B. (1 2 3 4 5) oder so, je nach X.

> Also im Prinzip enthält die Bahn von x den Zyklus, bei dem
> x "erwischt" wird?

Genau. Die Bahnen sind die Ziffern, die in den einzelnen Zykeln stehen.

>  Und umgekehrt kann ich einfach schreiben, dass man bei den
> Bahnen direkt die Zyklen ablesen kann. Eindeutig ist das,
> weil die Zyklenmultiplikation kommutativ? ist, solange man
> eben "fremd" bleibt - richtig?

Hm, wenn ich weiß, daß {1, 2, 3} eine Bahn von a ist, dann könnte a doch = (1 2 3) oder = (1 3 2) sein. Die sind aber verschieden. Klar ist, daß es nur bis auf die Reihenfolge eindeutig sein kann, weil elementfremde Zykeln kommutieren.

> Aber wie soll ich das schreiben, so dass das auch mein
> Korrekteur akzeptiert?

Indem du einfach alles richtig machst, dann hat er keine Chance!

Gruß aus HH-Harburg
Dieter


Bezug
        
Bezug
Bahnen bei zykl. Permutationen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:25 Do 24.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]