matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBasen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Basen
Basen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:03 Mo 21.08.2006
Autor: Elbi

Aufgabe
a) Seien K ein Körper, V ein endlich-dimensionaler K-Vektorraum und [mm]T \le V[/mm] ein Teilraum von V. Zeigen Sie:

(i) Es gibt einen Teilraum [mm]W \le V[/mm] mit [mm]V=T \oplus W[/mm]
(ii) Die Abbildung [mm]\phi: T \to V/W, T \mapsto T+W[/mm] ist ein Isomorphismus.

b) Es sei [mm]V=\IQ^{5 \times 1}[/mm] und

[mm]T=<\vektor{1 \\ 2 \\ -1 \\ 3 \\ -3} , \vektor{-4 \\ -3 \\ 4 \\ -7 \\ 6} , \vektor{-1 \\ 3 \\ 1 \\ 2 \\ -3} , \vektor{-5 \\ 0 \\ 5 \\ -5 \\ 4} , \vektor{-6 \\ 3 \\ 6 \\ -3 \\ 2}> \le V[/mm] sowie
[mm]U=<\vektor{3 \\ 3 \\ 1 \\ 7 \\ 2} , \vektor{6 \\ -1 \\ -10 \\ 4 \\ -12} , \vektor{1 \\ 2 \\ 3 \\ 4 \\ 5}> \le V[/mm]

Bestimmen Sie die Dim(T). Geben Sie außerdem Basen von T, V/T , [mm]T\capU[/mm] und T+U an.

N'abend,

bei der Augabe habe ich ja so meine Fragen.
bei a), nun da weiß ich nicht so richtig wie ich das zeigen soll, also mi ist klar, dass ich beim Isomorphismus zeigen muss, dass die Abbildung linear und bijektiv ist. Ja, weiter komm ich aber auch nicht,hmm...
bei b) habe ich schon die Dimension berechnet (also auf l.u Vektoren untersucht und die Anzahl dieser Vektoren ergibt ja dann die Dimension) und komme auf Dim(T)=3.
Eine Base von T, ist ja dann gerade die drei l.u. Vektoren, die ich schon bei der Dimensionsbetrachtung gefunden habe.
Bei V/T habe ich mal wieder keine Ahnung.
[mm]T\capU[/mm] und T+U wollte ich mit dem Zassenhauser Algorithmus machen.
Ich hoffe ihr könnt mir ein wenig helfen, wäre wirklich super super lieb.
Vielen Dank auf jedenfall im voraus!!!

LG
Elbi

        
Bezug
Basen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:23 Di 22.08.2006
Autor: felixf

Hallo Elbi!

> a) Seien K ein Körper, V ein endlich-dimensionaler
> K-Vektorraum und [mm]T \le V[/mm] ein Teilraum von V. Zeigen Sie:
>  
> (i) Es gibt einen Teilraum [mm]W \le V[/mm] mit [mm]V=T \oplus W[/mm]
>  (ii)
> Die Abbildung [mm]\phi: T \to V/W, T \mapsto T+W[/mm] ist ein
> Isomorphismus.
>  
> b) Es sei [mm]V=\IQ^{5 \times 1}[/mm] und
>  
> [mm]T=<\vektor{1 \\ 2 \\ -1 \\ 3 \\ -3} , \vektor{-4 \\ -3 \\ 4 \\ -7 \\ 6} , \vektor{-1 \\ 3 \\ 1 \\ 2 \\ -3} , \vektor{-5 \\ 0 \\ 5 \\ -5 \\ 4} , \vektor{-6 \\ 3 \\ 6 \\ -3 \\ 2}> \le V[/mm]
> sowie
>  [mm]U=<\vektor{3 \\ 3 \\ 1 \\ 7 \\ 2} , \vektor{6 \\ -1 \\ -10 \\ 4 \\ -12} , \vektor{1 \\ 2 \\ 3 \\ 4 \\ 5}> \le V[/mm]
>  
> Bestimmen Sie die Dim(T). Geben Sie außerdem Basen von T,
> V/T , [mm]T\capU[/mm] und T+U an.
>  N'abend,
>  
> bei der Augabe habe ich ja so meine Fragen.
>  bei a), nun da weiß ich nicht so richtig wie ich das
> zeigen soll, also mi ist klar, dass ich beim Isomorphismus
> zeigen muss, dass die Abbildung linear und bijektiv ist.
> Ja, weiter komm ich aber auch nicht,hmm...

Bei (i) benutz doch mal den Basisergaenzungssatz.

Und bei (ii) musst du (i) benutzen. Was ist der Kern der Abbildung? Fuer die Surjektivitaet schreib ein Element aus $V$ doch mal mit (i) als Summe eines Elementes aus $T$ und eines aus $W$. Hilft dir das weiter?

>  bei b) habe ich schon die Dimension berechnet (also auf
> l.u Vektoren untersucht und die Anzahl dieser Vektoren
> ergibt ja dann die Dimension) und komme auf Dim(T)=3.
>  Eine Base von T, ist ja dann gerade die drei l.u.
> Vektoren, die ich schon bei der Dimensionsbetrachtung
> gefunden habe.

Ja.

> Bei V/T habe ich mal wieder keine Ahnung.

Benutze (a), nur dass du $T$ mit $W$ vertauschen tust. Jetzt wende (i) und (ii) an.

>  [mm]T\cap U[/mm] und T+U wollte ich mit dem Zassenhauser Algorithmus
> machen.

Also $T + U$ solltest du problemlos hinbekommen, einfach alle erzeugenden Vektoren zusammenschreiben und daraus eine Basis bestimmen...

Bei $T [mm] \cal [/mm] U$ musst du die Standardmethode dazu anwenden. Wenn das bei euch Zassenhauser Algorithmus heisst, dann nimm das.

LG Felix


Bezug
                
Bezug
Basen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 Mi 23.08.2006
Autor: Elbi

Okay, danke

Also guck mal, habe ich das jetzt richtig verstanden? Bin mit meiner Begründung nicht wirklich zufrieden:

zu a)(i)
Injektiv: d.h. zu zeigen [mm]Kern\phi = \{0 \}[/mm]
Also [mm]\phi(T)=T+W=0[/mm]
da [mm]\phi(T) \in V/W[/mm] muss [mm]\phi(T)[/mm] "Vielfaches" von W sein damit es in V/W null ist.
[mm]\Rightarrow \phi(T)=T+W=0[/mm]
[mm]\Rightarrow T=0[/mm], denn dann [mm]\phi(T)=W[/mm].

Also ich bin mir da nicht sicher, aber ich bewege mich doch im Moduloraum oder?

Bei Surjektiv verstehe ich nicht was du da meintest, das bekomme ich nicht hin :( könntest du mir das nochmal erklären?

bei b) habe ich wegen V/T eine Frage.
Also verstehe ich es richtig, dass ich sage, dass [mm]V=U\oplusT[/mm] dann wende ich den Isomorphismus an und habe [mm]\phi : U \to V/T , U \mapsto U+T[/mm]. Dann wende ich darauf U an und dann habe ich eine BAse von V/T?!

Vielen Dank im voraus.

LG
Elbi

Bezug
                        
Bezug
Basen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 Mi 23.08.2006
Autor: felixf

Hallo Elbi!

> Also guck mal, habe ich das jetzt richtig verstanden? Bin
> mit meiner Begründung nicht wirklich zufrieden:
>  
> zu a)(i)
>  Injektiv: d.h. zu zeigen [mm]Kern\phi = \{0 \}[/mm]
>  Also
> [mm]\phi(T)=T+W=0[/mm]

wobei 0 hier die $0$ in $V/W$ ist, also $W$. (Wenn du das nicht verstehst, ueberleg mal wie (formal) die Elemente in $V/W$ aussehen, wie die Addition definiert ist und was das Nullelement dort ist.)

Und $T$ ist ein Element aus $V$, ja? Und kein Untervektorraum oder sonstwas.

>  da [mm]\phi(T) \in V/W[/mm] muss [mm]\phi(T)[/mm] "Vielfaches" von W sein
> damit es in V/W null ist.

Nein. Es muss genau $W$ sein.

>  [mm]\Rightarrow \phi(T)=T+W=0[/mm]
>  [mm]\Rightarrow T=0[/mm], denn dann

Nein, $T$ sollte sicher nicht gleich $0$ sein.

> [mm]\phi(T)=W[/mm].
>  
> Also ich bin mir da nicht sicher, aber ich bewege mich doch
> im Moduloraum oder?

$T$ ist in $V$, [mm] $\phi(T) [/mm] = T + W$ ist in $V/W$

> Bei Surjektiv verstehe ich nicht was du da meintest, das
> bekomme ich nicht hin :( könntest du mir das nochmal
> erklären?

Wie sieht ein beliebiges Element aus $V/W$ aus? Es ist von der Form $v + W$, $v [mm] \in [/mm] V$. So. Nun ist $V = T [mm] \oplus [/mm] W$, also kannst du $v = t + w$ schreiben mit $t [mm] \in [/mm] T$, $w [mm] \in [/mm] W$. Bekommst du jetzt eine Idee? Denk mal etwas drueber nach.

> bei b) habe ich wegen V/T eine Frage.
>  Also verstehe ich es richtig, dass ich sage, dass
> [mm]V=U\oplusT[/mm] dann wende ich den Isomorphismus an und habe
> [mm]\phi : U \to V/T , U \mapsto U+T[/mm]. Dann wende ich darauf U
> an und dann habe ich eine BAse von V/T?!

Du wendest diesen Isomorphismus auf eine Basis von $U$ an. Dies liefert dir dann eine Basis von $V/T$.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]