matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBasen in Vektorraum V zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - Basen in Vektorraum V zeigen
Basen in Vektorraum V zeigen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen in Vektorraum V zeigen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:59 Di 23.11.2010
Autor: void.

Aufgabe
Zeige: Ist [mm] b_1, [/mm] ......, [mm] b_n [/mm] eine Basis des Vektorraumes V , so ist auch
[mm] b_1 [/mm]
[mm] b_2 [/mm] + [mm] b_1 [/mm]
[mm] b_3 [/mm] + [mm] b_2 [/mm] + [mm] b_1 [/mm]
.
.
.
[mm] b_n [/mm] + [mm] b_{n-1} [/mm] + .... [mm] b_1 [/mm]

eine Basis von V .

Hallo,


mich verwirrt diese Aufgabe etwas....
eine Basis ist doch immer eine Menge von Vektoren mit den Eig. lin unabh und Erzeugend. Also ist hier zB. [mm] b_1 [/mm]  eine bel. Menge von Vektoren die eine Basis in V bilden?

wenn also [mm] b_1 [/mm] = { [mm] \vektor{x_1 \\ y_1 \\ z_1}, \vektor{x_2 \\ y_2 \\ z_2}, [/mm] ...., [mm] \vektor{x_m \\ y_m \\ z_m} [/mm] }


Dann ist doch

[mm] b_i [/mm] = { a * [mm] \vektor{x_1 \\ y_1 \\ z_1}, [/mm] a * [mm] \vektor{x_2 \\ y_2 \\ z_2}, [/mm] ...., a * [mm] \vektor{x_m \\ y_m \\ z_m} [/mm] }   [mm] \forall [/mm] i [mm] \in \IN [/mm] , a [mm] \in \IR [/mm]

Also das Vielfache von den Vektoren der Basis sind ja immer noch die Basis und durch Aufsummiern der einzelnen Basisvektoren passiert ja im Prinzip nix anderes.

Ist das damit schon gezeigt? ^^ wär wohl zu einfach



Gruß

        
Bezug
Basen in Vektorraum V zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Di 23.11.2010
Autor: wieschoo


>  [mm]b_1[/mm][mm] =x_1 [/mm]
>  [mm]b_2[/mm] + [mm]b_1[/mm][mm] =x_2 [/mm]
>  [mm]b_3[/mm] + [mm]b_2[/mm] + [mm]b_1[/mm][mm] =x_3 [/mm]
>  .
>  .
>  .
>  [mm]b_n[/mm] + [mm]b_{n-1}[/mm] + .... [mm]b_1[/mm][mm] =x_n [/mm]
>  

Du sollst zeigen: [mm] $x_1,\ldots,x_n$ [/mm] bilden eine Basis von V.



Bezug
                
Bezug
Basen in Vektorraum V zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:07 Di 23.11.2010
Autor: void.

ok neuer Versuch

Da [mm] b_1, [/mm] ... [mm] b_n [/mm] Basen von V gilt:

[mm] b_i [/mm]  = { [mm] a_i [/mm] * [mm] \vektor{x_1 \\ y_1 \\ z_1}, a_i [/mm] * [mm] \vektor{x_2 \\ y_2 \\ z_2}, [/mm]  ...., [mm] a_i [/mm] *  [mm] \vektor{x_m \\ y_m \\ z_m} [/mm]  } [mm] \forall [/mm] i [mm] \in [/mm] {1,....,n}


mit [mm] b_i [/mm] + [mm] b_{i+1} [/mm] folgt


[mm] b_i [/mm] + [mm] b_{i+1} [/mm]  = { [mm] (a_i [/mm] + [mm] a_{i+1} [/mm] ) * [mm] \vektor{x_1 \\ y_1 \\ z_1}, (a_i [/mm] + [mm] a_{i+1} [/mm] ) * [mm] \vektor{x_2 \\ y_2 \\ z_2}, [/mm]  ...., [mm] (a_i [/mm] + [mm] a_{i+1} [/mm] ) *  [mm] \vektor{x_m \\ y_m \\ z_m} [/mm]  } [mm] \forall [/mm] i [mm] \in [/mm] {1,....,n}

und da V ein Vektorraum ist ist die Vektoraddition in diesem abgeschlossen und es gilt [mm] b_i [/mm] + [mm] b_{i+1} [/mm] ist eine Basis für V für beliebige i's und Anzahl von Additionen

Geht das so?

Gruß


Bezug
                        
Bezug
Basen in Vektorraum V zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:11 Di 23.11.2010
Autor: wieschoo

Nein.

Es sind [mm] $b_1,\ldots b_n$ [/mm] Basisvektoren von V. Du sollst zeigen, dass
[mm] $p_1,\ldots,p_n$ [/mm] auch Basisvektoren von V sind mit [mm] $p_k=\sum_{i=1}^{k}b_i$ [/mm]


Bezug
                                
Bezug
Basen in Vektorraum V zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:32 Di 23.11.2010
Autor: void.

hallo,

danke ....damit war mein Ansatz schon völlig falsch.

aber wie kann ich das zeigen? durch die addition der Vektoren ändern sich die Einträge doch völlig, und bleiben nicht wie bei der multiplikation proportional zu einander.



Gruß

Bezug
                                        
Bezug
Basen in Vektorraum V zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:15 Mi 24.11.2010
Autor: jumape

du musst zeigen, dass jeder Vektor v aus deiner neuen Basis als Linearkombination aus den [mm] b_i [/mm] darstellbar ist und dann, dass jedes [mm] b_i [/mm] als Linearkombination aus den v darstellbar ist. Damit hast du Erzeugendensystem. Lineare Unabhängigkeit bekommst du, weil es ebenso viele v's wie [mm] b_i's [/mm] gibt.
Fertig

Bezug
                                                
Bezug
Basen in Vektorraum V zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:27 Fr 26.11.2010
Autor: void.

Danke für die Antworten

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]