matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBasen und Dimensionen bestimme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - Basen und Dimensionen bestimme
Basen und Dimensionen bestimme < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen und Dimensionen bestimme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:20 Sa 03.02.2007
Autor: agga

Aufgabe
Betrachte die Unterräume $U = Span((1,3,0,1), (1,0,0,-1), (-1,3,0,3)), W = Span((0,3,2,2), (0,0,2,0))$ des Vektorraumes [mm] $\IR^4$. [/mm] Bestimme Basen und die Dimension von $U, W, U [mm] \cap [/mm] W, U+W$.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi,
das Thema ist bei uns neu und ich werde aus den Aufzeichnungen aus der Vorlesung nicht wirklich schlau. Kann mir bitte jemand sagen, wie man denn Basen und Dimension aus einem Spann bestimmt und wie man den Durchschnitt bzw. die Summe bildet. Könnte das eventuell jemand anhand einer Beispielrechnung machen? Ich wär euch wirklich voll dankbar. Vielleicht könntet ihr sogar die Ergebnisse von allen vier Teilen hinschreiben, sodass ich dann kontrollieren kann, ob ich dann für mich nach der Rechnung das richtige Ergebnis rausgekriegt hab.
Gruß
Agga

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Basen und Dimensionen bestimme: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 Sa 03.02.2007
Autor: thoma2

dim U bzw. dim V bestimmst du normal mit gauss

bei den anderen schreibst du dir eine matrix mit  [mm] \pmat{ U^T & U^T \\ V^T & 0 } [/mm]
und bringst sie mit gauss auf obere dreiecksform.

bsp.:
sei U = [mm] <\vektor{1 \\ 0 \\ 0},\vektor{0 \\ 1 \\ 0}> [/mm]
und V =  [mm] <\vektor{0 \\ 1 \\ 1},\vektor{1 \\ 0 \\ 0}> [/mm]

dann ist [mm] \pmat{ U^T & U^T \\ V^T & 0 } [/mm] =

[mm] \pmat{ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\1 & 0 & 0 & 0 & 0 & 0 \\} [/mm]

auf obere dreiecksform
[mm] \pmat{ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ [red]0[/red] & [red]0[/red] & [red]0[/red] & -1 & 0 & 0 \\} [/mm]

aus der linken seite, oberhalb der roten nullen, folgt, T+U = [mm] \IR^3 [/mm] und aus der rechten seite, neben den roten nullen, folgt T [mm] \cap [/mm] U = [mm] E_{1} [/mm]

dim [mm] \IR^3 [/mm] = 3
dim [mm] E_{1} [/mm] = 1
sollte klar sein




Bezug
                
Bezug
Basen und Dimensionen bestimme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Sa 03.02.2007
Autor: agga

Hi thoma, danke schonmal für die Erklärung. Ich rechne jetzt mal mit meiner Aufgabe vor. Wäre echt lieb von dir, ob du mir dann sagen könntest, ob alles richtig gerechnet ist und ob ichs verstanden hab. Ansonsten bitte Korrektur.
Also für U:
[mm] $\pmat{ 1 & 3 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ -1 & 3 & 0 & 3 } \sim \pmat{ 1 & 3 & 0 & 1 \\ 0 & -3 & 0 & -2 \\ 0 & 6 & 0 & 4 } \sim \pmat{ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & \frac{2}{3} \\ 0 & 0 & 0 & 0 }$ [/mm]
Also müsste die Dimension von U = 2 sein, da nur noch zwei Vektoren übrigbleiben nach Gauß. Und als Basis kann ich dann nehmen $< [mm] \vektor{1 \\ 0 \\ 0 \\ -1} [/mm] , [mm] \vektor{0 \\ 1 \\ 0 \\ \frac{2}{3}} [/mm] >$ , richtig?
Für W:
[mm] $\pmat{ 0 & 3 & 2 & 2 \\ 0 & 0 & 2 & 0 } \sim \pmat{ 0 & 3 & 0 & 2 \\ 0 & 0 & 1 & 0 }$ [/mm]
Also ist hier die Dimension auch von W = 2 mit der Basis $< [mm] \vektor{0 \\ 3 \\ 0 \\ 2} [/mm] , [mm] \vektor{0 \\ 0 \\ 1 \\ 0} [/mm] >$ , richtig?
So, wenn ich dann die Ergebnisse in diese Matrix einsetze, dann erhalte ich folgendes:
[mm] $\pmat{ 1 & 0 & 0 & -1 & 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & \frac{2}{3} & 0 & 1 & 0 & \frac{2}{3} \\ 0 & 3 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 } \sim \pmat{ 1 & 0 & 0 & -1 & 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & \frac{2}{3} & 0 & 1 & 0 & \frac{2}{3} \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 0 & 2 }$ [/mm]
Wenn ich das dann verstanden habe, bekomme ich für $U + W = [mm] \IR^3$ [/mm] ??? und für $dim(U [mm] \cap [/mm] W) = 1$ und als Basis von $U [mm] \cap [/mm] W = [mm] <\vektor{0 \\ 3 \\ 0 \\ 2}>$ [/mm]
Habe ich so alles richtig gemacht?
Gruß
agga

Ich habe diese Frage in keinem anderen Internetforum gestellt

Bezug
                        
Bezug
Basen und Dimensionen bestimme: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 So 04.02.2007
Autor: thoma2

das sieht soweit ganz gut aus. nur hast du U + W nicht richtig interpretiert.

[mm] \pmat{ 1 & 0 & 0 & -1 & 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & \frac{2}{3} & 0 & 1 & 0 & \frac{2}{3} \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 0 & 2 } [/mm]

denn eine basis von U + W = < [mm] \vektor{1 \\ 0 \\ 0 \\ -1},\vektor{0 \\ 1 \\ 0 \\ \bruch{2}{3}},\vektor{0 \\ 0 \\ 1 \\ 0}> [/mm]


Bezug
                                
Bezug
Basen und Dimensionen bestimme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:38 Mo 05.02.2007
Autor: agga

Vielen Dank thoma, du hast mir wirklich sehr weitergeholfen.
Gruß
agga

Bezug
                
Bezug
Basen und Dimensionen bestimme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:50 So 04.02.2007
Autor: agga

Wenn thoma vielleicht keine Zeit hat, könnte dann eventuell jemand anderes nachrechnen und mir mitteilen ob ich das richtig gemacht habe.
Danke an alle!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]