matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBasen von V
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Basen von V
Basen von V < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen von V: Idee und Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:54 So 09.01.2011
Autor: Ersti10

Aufgabe
Es seien in [mm] \IR^{5} [/mm] die Vektoren:
[mm] v_{1}:= [/mm] (4,1,1,0,-2) ; [mm] v_{2}:= [/mm] (0,1,4,-1,2) ; [mm] v_{3}:= [/mm] (4,3,9,-2,2);
[mm] v_{4}:= [/mm] (1,1,1,1,1) ; [mm] v_{5}:= [/mm] (0,-2,-8,2,-4)
gegeben. Weiter sei V:= [mm] span(v_{1},v_{2},v_{3},v_{4},v_{5}). [/mm]

Finden Sie alle Basen von V die aus den Elementen { [mm] v_{1}, [/mm] . . . , [mm] v_{5} [/mm] } bestehen, und kombinieren Sie jeweils [mm] v_{1}, [/mm] . . . , [mm] v_{5} [/mm] daraus linear.

Also:
Mein erster Schritt war es zu gucken, ob es Vektoren gibt, die linear abhängig sind. Das ist bei [mm] v_{2} [/mm] und [mm] v_{5} [/mm] der Fall.
Bei [mm] v_{1},v_{2},v_{3} [/mm] muss ich noch prüfen ob die linear unabhängig sind.

Nun kommt aber meine Fragen.

1.)Ich soll ja alle Basen von V finden, also wird das klar mehr als eine sein. Reicht es da aus, wenn ich 2 Vektoren nehme die lin. unabhängig sind, oder brauche ich doch 5 Vektoren, da wir uns im [mm] \IR^{5} [/mm] befinden?

2.) Ich verstehe den letzten Teil der Aufgabe nicht. Wenn ich die Basen gefunden habe, wieso soll ich dann die Vektoren daraus linear kombinieren? Wie ist das machbar?

Hoffe jmd. kann mir helfen. =)

        
Bezug
Basen von V: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 So 09.01.2011
Autor: schachuzipus

Hallo Ersti10,


> Es seien in [mm]\IR^{5}[/mm] die Vektoren:
>  [mm]v_{1}:=[/mm] (4,1,1,0,-2) ; [mm]v_{2}:=[/mm] (0,1,4,-1,2) ; [mm]v_{3}:=[/mm]
> (4,3,9,-2,2);
>  [mm]v_{4}:=[/mm] (1,1,1,1,1) ; [mm]v_{5}:=[/mm] (0,-2,-8,2,-4)
>  gegeben. Weiter sei V:=
> [mm]span(v_{1},v_{2},v_{3},v_{4},v_{5}).[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
> Finden Sie alle Basen von V die aus den Elementen { [mm]v_{1},[/mm]
> . . . , [mm]v_{5}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

} bestehen, und kombinieren Sie jeweils

> [mm]v_{1},[/mm] . . . , [mm]v_{5}[/mm] daraus linear.
>  Also:
>  Mein erster Schritt war es zu gucken, ob es Vektoren gibt,
> die linear abhängig sind. Das ist bei [mm]v_{2}[/mm] und [mm]v_{5}[/mm] der
> Fall.

Ok, dann kannst du (meinetwegen) [mm]v_5[/mm] schonmal rausschmeißen.

Dann stopfe mal [mm]v_1,..., v_4[/mm] als Spalten in eine Matrix und bringe sie in Zeilenstufenform, um ihren Rang zu bestimmen.

Der gibt die die Dimension des von den Vektoren [mm]v_1,..., v_4[/mm] aufgespannten Raumes an.

Greife dir dann jeweils entsprechend dieser Dimension viele Vektoren aus dem Spann raus und prüfe auf lineare Unabh., je Dim.-viele lin. unabh. Vektoren bilden dann eine Basis

>  Bei [mm]v_{1},v_{2},v_{3}[/mm] muss ich noch prüfen ob die linear
> unabhängig sind.
>  
> Nun kommt aber meine Fragen.
>  
> 1.)Ich soll ja alle Basen von V finden, also wird das klar
> mehr als eine sein. Reicht es da aus, wenn ich 2 Vektoren
> nehme die lin. unabhängig sind, oder brauche ich doch 5
> Vektoren, da wir uns im [mm]\IR^{5}[/mm] befinden?
>  
> 2.) Ich verstehe den letzten Teil der Aufgabe nicht. Wenn
> ich die Basen gefunden habe, wieso soll ich dann die
> Vektoren daraus linear kombinieren? Wie ist das machbar?

Nun, sagen wir hypothetisch (ich habe nichts gerechnet!), du rechnest aus, Dim=3 und [mm]\{v_1,v_2,v_4\}[/mm] bildet eine Basis.

Dann kannst du etwa [mm]v_5[/mm] darstellen als [mm]v_5=\lambda\cdot{}v_1+\mu\cdot{}v_2+\nu\cdot{}v_4[/mm]

Da du oben schon nachgerechnet hast, dass [mm]v_2,v_5[/mm] lin. abh. sind, kannst du schreiben

[mm]v_5=0\cdot{}v_1-2\cdot{}v_2+0\cdot{}v_4[/mm]

In den anderen Fällen musst du etwas mehr Rechenaufwand betreiben, um die Koeffizienten [mm]\lambda,\mu,\nu[/mm] zu bestimmen.

>  
> Hoffe jmd. kann mir helfen. =)

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]