matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBasis + Polynome
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Basis + Polynome
Basis + Polynome < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis + Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 Di 17.05.2005
Autor: mausi

Hallo wer kann mir helfen..

ich soll eine Basis im Vektorraum der Polynome bestimmen [mm] span(p_1,p_2,p_3,p_4) [/mm] mit [mm] p_1=x^2+x,p_2=-2x+1,p_3=3x^2+x+1,p_4=x^2-3x+2 [/mm]

wie mache ich das bitte?
danke

        
Bezug
Basis + Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Di 17.05.2005
Autor: Max

Hallo Susi,

wenn ich das richtig verstehe sollst du eine Basis angeben, indem man diese vier Polynome darstellen kann. In diesem Fall gilt aber [mm] $p_3(x)=3p_1(x)+p_2(x)$ [/mm] und [mm] $p_4(x)=p_1(x)+2p_2(x)$. [/mm] Damit kann man alle vier Polynome alleine durch [mm] $p_1$ [/mm] und [mm] $p_2$ [/mm]  darstellen. Damit wäre [mm] $\{p_1; p_2\}$ [/mm] eine Basis.

Max

Bezug
                
Bezug
Basis + Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:51 Di 17.05.2005
Autor: mausi

danke aber wie realisiere ich das dann wenn [mm] K=Z_5 [/mm] und [mm] K=Z_2 [/mm] bei der gleichen Aufgabe?

Bezug
                        
Bezug
Basis + Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Mi 18.05.2005
Autor: NECO

Hallo Mausi

[mm] \IZ_{2} [/mm]  hat ja 2 Elementen das sind {0,1}
[mm] \IZ_{5} [/mm] hat 5 Elementen das sind : {0,1,2,3,4,}

Das sind Die Restklassen. Du muss bei [mm] \IZ_{5} [/mm]  aufpassen dass z.b
4+4=3 ist.  oder 2+3=0
Wenn du bei  [mm] \IZ_{5} [/mm] oder  [mm] \IZ_{2} [/mm] bist, dann musst du nur deine Polynomen Koeffizienten über [mm] \IZ_{5} [/mm] bzw [mm] \IZ_{2} [/mm]  betrachten.

(NUR DIE KOEFFIZIENTEN NICHT DIE EXPONENTEN)

Bei [mm] \IZ_{2} [/mm] ist 1+1=0,  ich glaueb du kennst dich schon mit modulo rechnen aus,


oder bei [mm] \IZ_{2} [/mm] ist z.B.  -1=1   ok??

HAst du verstanden??


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]