matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteBasiswechsel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Skalarprodukte" - Basiswechsel
Basiswechsel < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basiswechsel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:16 Fr 13.07.2007
Autor: Zerwas

Aufgabe
Die Matrix [mm] A_B [/mm] beschreibt eine Bilinearform in der Basis B. Geben sie die Matrix bzgl. der Standardbasis an.
[mm] A_B=\pmat{0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 }; B=(\pmat{1\\0\\0\\0}, \pmat{1\\1\\0\\0}, \pmat{1\\1\\1\\0}, \pmat{1\\1\\1\\1}) [/mm]

Ich habe mir überlegt:
Sei [mm] A_E [/mm] die Bilinearform bzgl. der Standardbasis (E), dann lässt sich diese Bilden indem man S:=Basiswechselmatrix von B nach E und [mm] A_E=S^T*A_B*S [/mm]

[mm] S^{-1} [/mm] also die Basiswechselmatrix von E nach B lässt sich leicht aufstellen, indem man die Basis B als Matrix schreibt und erhält dann:
[mm] S^{-1}:=\pmat{1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1} [/mm]
Wenn man [mm] S^{-1^{-1}} [/mm] bildet erhält man: [mm] S^{-1^{-1}}=S=\pmat{1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1} [/mm]

Und kann dann auch [mm] S^T=\pmat{1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1} [/mm]

Und damit [mm] A_E [/mm] = [mm] S^T*A_B*S [/mm] = [mm] \pmat{1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1}*\pmat{0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 }*\pmat{1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1} [/mm] = [mm] \pmat{ 0 & 1 & -1 & 0 \\ 1 & -1 & 1 & -1 \\ -1 & 2 & -2 & 2 \\ 0 & -1 & 2 & -2} [/mm]

Stimmt das so? Nachgerechnet habe ich mit einem Matheprogramm also sollten die Rechnungen stimmen ist nur noch die Frage ob die Matritzen korrekt aufgestellt sind und das so überhaupt machbar ist.

Gruß Zerwas

        
Bezug
Basiswechsel: Antwort
Status: (Antwort) fertig Status 
Datum: 14:56 Fr 13.07.2007
Autor: angela.h.b.


> [mm]S^{-1}[/mm] also die Basiswechselmatrix von E nach B lässt sich
> leicht aufstellen, indem man die Basis B als Matrix
> schreibt und erhält dann:
>  [mm]S^{-1}:=\pmat{1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1}[/mm]

Hallo,

dies ist die Matrix, welche Dir aus Koordinaten bzgl. B solche bzgl. E macht, also die Basiswechselmatrix von B nach E.

Gruß v. Angela

Bezug
                
Bezug
Basiswechsel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Fr 13.07.2007
Autor: Zerwas

Okay klar ... ich stelle ja die neue Darstellungsmatrix auf indem ich den Basiswechesel zu der alten Basis B (also S) mit der alten Darstellungsmatrix [mm] (A_B) [/mm] und dann noch mit dem Basiswechsel zur neuen Basis E multipliziere.
Oder?

Gruß Zerwas

Bezug
                        
Bezug
Basiswechsel: Antwort
Status: (Antwort) fertig Status 
Datum: 10:37 Sa 14.07.2007
Autor: angela.h.b.


> Okay klar ... ich stelle ja die neue Darstellungsmatrix auf
> indem ich den Basiswechesel zu der alten Basis B (also S)
> mit der alten Darstellungsmatrix [mm](A_B)[/mm] und dann noch mit
> dem Basiswechsel zur neuen Basis E multipliziere.
>  Oder?

Hallo,

ja. Man muß es halt in der richtigen Reihenfolge tun.

[mm] A_{E\to E}=T_{B\to E}A_{B\to B}T_{E\to B} [/mm]

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]