matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieBedingter Erwartungswert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Bedingter Erwartungswert
Bedingter Erwartungswert < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingter Erwartungswert: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:23 Mi 29.10.2014
Autor: Hartzer

Aufgabe
Es seien [mm] \mathcal{G} \subset \mathcal{F} [/mm] eine [mm] Sub-\sigma-Algebra [/mm] und X eine Zufallsvariable, so dass X [mm] \in L^{+}(\mathcal{F}) [/mm] oder X [mm] \in L^{1}(\mathcal{F}). [/mm] Beweisen Sie die folgenden Aussagen:

a) Es gilt [mm] E[X|\{\Omega,\emptyset\}]=E[X] [/mm]
b) Es gilt [mm] E[X|\mathcal{G}]=X \gdw [/mm] X ist eine [mm] \mathcal{G}-messbare [/mm] Zufallsvariable


Hallo :-)

zu a)
Da stocke ich grad bei der genauen Definition des bed. Erwartungswertes.
Bei E[X|Y=y], X,Y Zufallsvariablen, müsste doch die Definition lauten (im diskreten Fall):

[mm] \summe_{i} [/mm] i*P(X=i | [mm] Y=y)=\summe_{i} [/mm] i* [mm] \bruch{P(X=i, Y=y)}{P(Y=y)} [/mm]

Nur wie sieht das aus, wenn ich auf einer [mm] \sigma-Algebra [/mm] bedinge?
Sei [mm] \mathcal{A}=\{\Omega,\emptyset\} [/mm] eine [mm] \sigma-Algebra \Rightarrow E[X|\mathcal{A}]=? [/mm]

Wäre für einen Tipp sehr dankbar :-)


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bedingter Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 06:01 Fr 31.10.2014
Autor: tobit09

Hallo Hartzer und herzlich [willkommenmr]!


> Es seien [mm]\mathcal{G} \subset \mathcal{F}[/mm] eine
> [mm]Sub-\sigma-Algebra[/mm] und X eine Zufallsvariable, so dass X
> [mm]\in L^{+}(\mathcal{F})[/mm] oder X [mm]\in L^{1}(\mathcal{F}).[/mm]

[mm] $L^{+}(\mathcal{F})$ [/mm] bezeichnet bei euch die Menge der [mm] $\mathcal{F}$-messbaren [/mm] Funktionen mit Werten in [mm] $\IR_{\ge0}$? [/mm]


> Beweisen Sie die folgenden Aussagen:
>  
> a) Es gilt [mm]E[X|\{\Omega,\emptyset\}]=E[X][/mm]
>  b) Es gilt [mm]E[X|\mathcal{G}]=X \gdw[/mm] X ist eine
> [mm]\mathcal{G}-messbare[/mm] Zufallsvariable


> zu a)
>  Da stocke ich grad bei der genauen Definition des bed.
> Erwartungswertes.

Dann empfiehlt es sich, die Definition in deinen Unterlagen nachzuschlagen... ;-)


>  Bei E[X|Y=y], X,Y Zufallsvariablen, müsste doch die
> Definition lauten (im diskreten Fall):
>  
> [mm]\summe_{i}[/mm] i*P(X=i | [mm]Y=y)=\summe_{i}[/mm] i* [mm]\bruch{P(X=i, Y=y)}{P(Y=y)}[/mm]
>  
> Nur wie sieht das aus, wenn ich auf einer [mm]\sigma-Algebra[/mm]
> bedinge?
>  Sei [mm]\mathcal{A}=\{\Omega,\emptyset\}[/mm] eine [mm]\sigma-Algebra \Rightarrow E[X|\mathcal{A}]=?[/mm]
>  
> Wäre für einen Tipp sehr dankbar :-)

Vermutlich lautet eure Definition im obigen Setting in etwa wie folgt:

Eine Zufallsgröße (nicht etwa eine Zahl!) $Z$ heißt eine Version von [mm] $E[X|\mathcal{G}]$ [/mm] (Kurzschreibweise: [mm] $E[X|\mathcal{G}]=Z$), [/mm] falls sie folgende Eigenschaften hat:
1) $Z$ ist [mm] $\mathcal{G}$-messbar [/mm] (und nicht nur [mm] $\mathcal{F}$-messbar). [/mm]
2) [mm] $\integral_A Z\;dP=\integral_A X\;dP$ [/mm] für alle [mm] $A\in\mathcal{G}$. [/mm]

(Man kann (zumindest im Fall [mm] $X\in L^1(\mathcal{F})$) [/mm] zeigen, dass eine [mm] $P|_\mathcal{G}$-fast-sicher [/mm] eindeutig bestimmte Zufallsgröße $Z$ mit diesen Eigenschaften existiert.)


Bei a) ist also zu zeigen, dass die konstante Zufallsgröße $Z:=E[X]$ eine Version von [mm] $E[X|\{\emptyset,\Omega\}]$ [/mm] ist (also die Eigenschaften 1) und 2) erfüllt).

Bei b) ist die Richtung [mm] "$\Rightarrow$" [/mm] klar (Warum?).

Für die Richtung [mm] "$\Leftarrow$": [/mm]
Sei $X$ also [mm] $\mathcal{G}$-messbar. [/mm]
Zu zeigen ist, dass $Z:=X$ eine Version von [mm] $E[X|\mathcal{G}]$ [/mm] ist (also die Eigenschaften 1) und 2) hat).


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]