matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreBerechnen Sie (kompl. Zahlen)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mengenlehre" - Berechnen Sie (kompl. Zahlen)
Berechnen Sie (kompl. Zahlen) < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnen Sie (kompl. Zahlen): Lösungsansatz und dann?
Status: (Frage) beantwortet Status 
Datum: 17:25 Sa 18.11.2006
Autor: Bredi85

Aufgabe
Berechnen Sie:


[mm] \bruch{3^{300001}*4^{600002}}{(6-\wurzel{12}*i)^{600002}} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Ich habe diese Aufgabe zu lösen und folgenden Ansatz verwendet.

Ich habe zuerst ^300001 ausgeklammert:

( [mm] \bruch{48}{(6-\wurzel{12}*i)^{2}} )^{300001} [/mm]

Dann habe ich den Nenner nach 2. Bin. Formel umgeformt:

[mm] (\bruch{48}{(24-12\wurzel{12}i)} )^{300001} [/mm]

Als nächstes habe im Nenner 12 ausgeklammert und mit Zähler gekürzt:

[mm] (\bruch{4}{(2-\wurzel{12}i)} )^{300001} [/mm]

Nun im Nenner 2 Ausgeklammert und wieder gekürzt:

[mm] (\bruch{2}{(1-\wurzel{3}i)} )^{300001} [/mm]


Doch jetzt weiss ich nicht mehr weiter. Haben die komplexen Zahlen gerade neu gelernt. Wie mache ich weiter, damit ich das irgendwie ausrechnen kann?

Wäre echt toll, wenn mir jemand weiter helfen kann

Schöne Grüße

Bredi

        
Bezug
Berechnen Sie (kompl. Zahlen): Antwort
Status: (Antwort) fertig Status 
Datum: 12:59 So 19.11.2006
Autor: ullim

Hi,


> [mm](\bruch{2}{(1-\wurzel{3}i)} )^{300001}[/mm]
>  
>

Jetzt kann man mit dem konjugiert komplexen erweitern, das ergibt dann [mm] (\br{1+i\wurzel{3}}{2})^{300001} [/mm]

Nun kann man das Ganze auf die Form [mm] r*e^{i\phi} [/mm] bringen. Für r ergibt sich r=1 und für [mm] \phi [/mm] ergibt sich [mm] \phi=60 [/mm] Grad entspricht [mm] \br{\pi}{3} [/mm]

Also hat die koplexe Zahl die Form [mm] e^{i*300001*\br{\pi}{3}}. [/mm] Nun ist [mm] e^{i\phi} [/mm] periodisch zu [mm] 2\pi [/mm]

[mm] 300001*\br{\pi}{3} [/mm] mod [mm] 2\pi [/mm] ist gleich [mm] \br{\pi}{3}, [/mm] also

[mm] e^{i*300001*\br{\pi}{3}}=e^{i*\br{\pi}{3}}=cos(\br{\pi}{3})+i*sin(\br{\pi}{3})=\br{1}{2}(1+i\wurzel{3}) [/mm]

> Doch jetzt weiss ich nicht mehr weiter. Haben die komplexen
> Zahlen gerade neu gelernt. Wie mache ich weiter, damit ich
> das irgendwie ausrechnen kann?
>  
> Wäre echt toll, wenn mir jemand weiter helfen kann
>  
> Schöne Grüße
>  
> Bredi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]