matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationBerechnung Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Berechnung Integral
Berechnung Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung Integral: Berechnung
Status: (Frage) beantwortet Status 
Datum: 19:01 So 05.04.2009
Autor: sillix

Aufgabe
[mm] \integral_{}^{}{\bruch{4x}{1-x²} dx} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Leute,

das ist mein erster Beitrag hier. Ich hoffe, es klappt alles.

Also ich soll das obige unbestimmte Integral [mm] \integral_{}^{}{\bruch{4x}{1-x^2} dx} [/mm] lösen. Mein Ansatz war dabei folgender:

=> 4 * [mm] \integral_{}^{}{\bruch{x}{1-x²} dx} [/mm]

= 4 * [mm] \integral_{}^{}{x dx} [/mm] * [mm] \integral_{}^{}{\bruch{1}{1-x^2} dx} [/mm]

dann per Substitution: u = 1 - [mm] x^2 [/mm] = g(x) => [mm] \bruch{du}{dx}=g'(x) [/mm] => dx = [mm] \bruch{du}{-2x} [/mm]

=> 4 * bruch{1}{2} [mm] x^2 [/mm] * [mm] \integral_{}^{}{\bruch{1}{u}*bruch{1}{-2x}*du} [/mm]
= [mm] 2x^2 [/mm] * [mm] \bruch{1}{-2x}*\integral_{}^{}{\bruch{1}{u}du} [/mm]
= - [mm] \bruch{2x^2}{2x} [/mm] * ln|u| + C = -x * [mm] ln{1-x^2} [/mm] + C

Laut Lösung (ohne Lösungsweg) soll aber folgendes herauskommen:

ln [mm] \bruch{1}{(1-x^2)^2} [/mm]

Irgendwie komme ich nicht auf den richtigen Weg, ich hoffe, ihr könnt mir helfen!!

        
Bezug
Berechnung Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 So 05.04.2009
Autor: angela.h.b.


> [mm]\integral_{}^{}{\bruch{4x}{1-x²} dx}[/mm]

> Hallo Leute,
>  
> das ist mein erster Beitrag hier. Ich hoffe, es klappt
> alles.

Hallo,

[willkommenmr].


>  
> Also ich soll das obige unbestimmte Integral
> [mm]\integral_{}^{}{\bruch{4x}{1-x^2} dx}[/mm] lösen. Mein Ansatz
> war dabei folgender:
>  
> => 4 * [mm]\integral_{}^{}{\bruch{x}{1-x²} dx}[/mm]
>  
> = 4 * [mm]\integral_{}^{}{x dx}[/mm] *
> [mm]\integral_{}^{}{\bruch{1}{1-x^2} dx}[/mm]

Bei dieser Umformung ist Dein Wunsch Vater Deiner Gedanken. Es gibt diese Umformung nicht.

> dann per Substitution: u = 1 - $ [mm] x^2 [/mm] $ = g(x) => $ [mm] \bruch{du}{dx}=g'(x) [/mm] $ => dx = $ [mm] \bruch{du}{-2x} [/mm] $

Mach gleich diese Substitution, damit wirst Du glücklich werden.


Übrigens: wenn wir setzen [mm] g(x)=1-x^2, [/mm] dann hast Du hier bis auf einen Faktor ein Integral der Gestalt [mm] \integral{\bruch{g'(x)}{g(x)} dx}, [/mm] dessen Lösung Du vermutlich bereits aus der Schule kennst.

Gruß v. Angela



Bezug
                
Bezug
Berechnung Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 So 05.04.2009
Autor: sillix

Hallo Angela!

Vielen Dank für deine schnelle Antwort. Ich habe nun direkt mit der Substitution angefangen, dann steht bei mir:

4 * [mm] \integral_{}{}{-\bruch{x}{2ux}du} [/mm] = 4 * [mm] \integral_{}{}{-\bruch{1}{2u}du} [/mm]

Wenn ich das weiter auflöse, komme ich leider immer noch nicht zur entsprechenden Lösung :( Irgendetwas mache ich wieder falsch ...

Bezug
                        
Bezug
Berechnung Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 So 05.04.2009
Autor: angela.h.b.


> mit der Substitution angefangen, dann steht bei mir:
>  
> 4 * [mm]\integral_{}{}{-\bruch{x}{2ux}du}[/mm] = 4 *
> [mm]\integral_{}{}{-\bruch{1}{2u}du}[/mm]
>  
> Wenn ich das weiter auflöse, komme ich leider immer noch
> nicht zur entsprechenden Lösung :( Irgendetwas mache ich
> wieder falsch ...

Hallo,

um zu sagen, was Du falsch machst, müßte man sehen, ws Du tust. Wenn Du mit meinen Hinweisen nicht zurecht kommst, rechne also vor.

Du hast jetzt jedenfalls  [mm] 4'\integral_{}{}{-\bruch{1}{2u}du}=4*(-\bruch{1}{2})\integral_{}{}{\bruch{1}{u}du}. [/mm]

Die Stammfunktion von [mm] \bruch{1}{u} [/mm] solltest Du kennen.

Danach mußt Du dann noch rücksubstituieren, also das u wieder ersetzen durch einen Ausdruck mit x.

Gruß v. Angela




Bezug
                                
Bezug
Berechnung Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:16 So 05.04.2009
Autor: sillix


> Hallo,
>  
> um zu sagen, was Du falsch machst, müßte man sehen, ws Du
> tust. Wenn Du mit meinen Hinweisen nicht zurecht kommst,
> rechne also vor.

Das mache ich sehr gerne :) Hätte ja sein können, dass ich bei dem Schritt mit der Substiotution etwas falsch gemacht habe.
  

> Du hast jetzt jedenfalls  
> [mm]4'\integral_{}{}{-\bruch{1}{2u}du}=4*(-\bruch{1}{2})\integral_{}{}{\bruch{1}{u}du}.[/mm]
>  
> Die Stammfunktion von [mm]\bruch{1}{u}[/mm] solltest Du kennen.
>  
> Danach mußt Du dann noch rücksubstituieren, also das u
> wieder ersetzen durch einen Ausdruck mit x.

Ja, das habe ich getan:

[mm] 4*(-\bruch{1}{2})\integral_{}{}{\bruch{1}{u}du} [/mm] = -2 * [mm] \integral_{}{}{\bruch{1}{u}du} [/mm]

Nun kommt ja das Grund- bzw. Stammintegral zum Tragen:

= -2 * ln |u| mit u = g(x) = 1 - [mm] x^2 [/mm]
= -2 * ln |1 - [mm] x^2| [/mm]

Und äh .. ja also .. nun ist mir eben erst, wo ich diesen Beitrag schreibe, die entsprechende Logarithmen-Regel eingefallen:

-2 * ln |1 - [mm] x^2| [/mm] = ln | [mm] (1-x^2)^-2 [/mm] | = ln [mm] |\bruch{1}{(1-x^2)^2}| [/mm]

Peinlich peinlich, ich hatte die Lösung schon auf dem Papier -schäm- Trotzdem vielen Dank für deine Geduld und Ratschläge!! Sonst hätte ich hier noch stundenlang rumgerätselt :D

Gruß,
Patrick

Bezug
                                        
Bezug
Berechnung Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 So 05.04.2009
Autor: angela.h.b.


> Und äh .. ja also .. nun ist mir eben erst, wo ich diesen
> Beitrag schreibe, die entsprechende Logarithmen-Regel
> eingefallen:

Hallo,

das ist doch das beste, was einem beim Schreiben eines Beitrages passieren kann.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]