matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenBereichsintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Bereichsintegral
Bereichsintegral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bereichsintegral: Falsche Lsg?!
Status: (Frage) beantwortet Status 
Datum: 16:56 Di 10.07.2012
Autor: herbi_m

Aufgabe
Zu Berechnen ist das Bereichsintegral von x^2y dxdy [weiß gerade nicht, wie ich das am PC mit den doppelten Integralen hinbekomme]
Dabei sei [mm] x^2+y^2 [/mm] kleiner/gleich 1 und y größer/gleich 0

Der Bereich ist ja durch einen Halbkreis definiert, daher habe ich mein Integral jetzt in Polarkoordinaten umgeformt.
Für das äußere Integral habe ich dann die Grenzen 0 bis 1 und für das innere Integral 0 bis [mm] \pi [/mm]
Im Integral steht dann [mm] r^2 cos^2 [/mm] (a) r sin (a) r dr da
[mm] r^4 [/mm] kann ich dann vor das innere Integral ziehen sodass im inneren Integral noch [mm] cos^2 [/mm] (a) sin (a) da stehen bleibt...
Wenn ich das jetzt integriere komme ich durch Substition (z=cos(a) und dz= -sin(a)da) auf 1/3 [mm] cos^3 [/mm] (a) als Stammfunktion. da setze ich dann die Grenzen ein um komme somit auf -1. Zusammen mit dem äußeren Integral (Stammfunktion [mm] 1/5r^5) [/mm] komme ich auf 1/15 als Wert für das gesamte Bereichsintegral!
In den Lösungen steht allerdings 2/15... Wo steckt jetzt mein Fehler?! Wäre lieb, wenn mal jemand drüber schauen könnte!
Lg
herbi

        
Bezug
Bereichsintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Di 10.07.2012
Autor: notinX

Hallo,

> Zu Berechnen ist das Bereichsintegral von x^2y dxdy [weiß
> gerade nicht, wie ich das am PC mit den doppelten
> Integralen hinbekomme]

das ist eine schlechte Ausrede. Schau mal hier:
https://vorhilfe.de/mm
bzw. hier:
http://de.wikipedia.org/wiki/Hilfe:TeX#Mathematische_Symbole

da findest Du alles, was Du brauchst.

>  Dabei sei [mm]x^2+y^2[/mm] kleiner/gleich 1 und y größer/gleich
> 0
>  Der Bereich ist ja durch einen Halbkreis definiert, daher
> habe ich mein Integral jetzt in Polarkoordinaten umgeformt.
> Für das äußere Integral habe ich dann die Grenzen 0 bis
> 1 und für das innere Integral 0 bis [mm]\pi[/mm]
>  Im Integral steht dann [mm]r^2 cos^2[/mm] (a) r sin (a) r dr da
>  [mm]r^4[/mm] kann ich dann vor das innere Integral ziehen sodass im
> inneren Integral noch [mm]cos^2[/mm] (a) sin (a) da stehen
> bleibt...
>  Wenn ich das jetzt integriere komme ich durch Substition
> (z=cos(a) und dz= -sin(a)da) auf 1/3 [mm]cos^3[/mm] (a) als
> Stammfunktion. da setze ich dann die Grenzen ein um komme
> somit auf -1. Zusammen mit dem äußeren Integral
> (Stammfunktion [mm]1/5r^5)[/mm] komme ich auf 1/15 als Wert für das
> gesamte Bereichsintegral!
>  In den Lösungen steht allerdings 2/15... Wo steckt jetzt
> mein Fehler?! Wäre lieb, wenn mal jemand drüber schauen
> könnte!

Die Lösung kann ich bestätigen, Deinen Fehler zu finden ist aber äußerst mühselig. Schreib das doch mal vernünftig auf, dann sieht man das auch leichter.

>  Lg
> herbi

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]