matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikBernoulli-Verteilung, Unabhaen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Bernoulli-Verteilung, Unabhaen
Bernoulli-Verteilung, Unabhaen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernoulli-Verteilung, Unabhaen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:53 So 11.01.2015
Autor: Melisa

Aufgabe
Es seien X und Y unabhaengige Bernoulli-verteilte Zufallsvariablen zum Parameter
[mm] p=\bruch{1}{2} [/mm]

(i) Untersuchen Sie, ob X + Y und |X − Y | unkorreliert und/ oder unabhaengig sind.
(ii) Fur alle [mm] \delta \in [/mm] [−1, 1] sei Z := [mm] \delta [/mm] * X + [mm] \wurzel{1-\delta^2} [/mm] * Y. Berechnen Sie Corr(X,Z)


Hallo an Alle,
hab die Aufgabe zu loesen und braeuchte Ihre Hilfe :)

zu (i)
Cov(X+Y, |X-Y|) = Cov(X,X) - Cov(X,Y) + Cov(Y,X) - Cov(Y,Y) = 0 => unkorreliert.

Seien X+Y = 0 und |X-Y| = 1 =>  P(X+Y = 0, |X-Y| = 1) = 0 [mm] \not= \bruch{1}{2}(1-\bruch{1}{2})^3 [/mm] = P(X+Y =0)*P(|X-Y| = 1) => nicht unabhaengig

Ist es korrekt??

zu(ii)
Ich weiss es gar nicht, mit was ich anfangen soll. Vielleicht koennt Ihr mir einen Tipp geben

Liebe Gruesse,
Melisa

        
Bezug
Bernoulli-Verteilung, Unabhaen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:40 So 11.01.2015
Autor: luis52


>  hab die Aufgabe zu loesen und braeuchte Ihre Hilfe :)
>  
> zu (i)
>  Cov(X+Y, |X-Y|) = Cov(X,X) - Cov(X,Y) + Cov(Y,X) -
> Cov(Y,Y) = 0 => unkorreliert.

Moin Melisa, die von dir verwandte Formel der Kovarianz ist nicht korrekt.

>  
> Seien X+Y = 0 und |X-Y| = 1 =>  P(X+Y = 0, |X-Y| = 1) = 0

> [mm]\not= \bruch{1}{2}(1-\bruch{1}{2})^3[/mm] = P(X+Y =0)*P(|X-Y| =
> 1) => nicht unabhaengig
>  
> Ist es korrekt??



*Ich* rechne so $P(X+Y = 0, |X-Y| = 1) = [mm] 0\ne\frac{1}{4}\cdot\frac{1}{2}= [/mm] P(X+Y = [mm] 0)\cdot [/mm] P( |X-Y| = 1)$




>  
> zu(ii)
>  Ich weiss es gar nicht, mit was ich anfangen soll.
> Vielleicht koennt Ihr mir einen Tipp geben


Bitte  ueberarbeite mal die Aufgabemstellung: Vermutlich ist $Z := [mm] \delta \cdot [/mm] X +  [mm] \wurzel{1-\delta^2}\red{Y}$ [/mm] und $Cov[X,Y]$ wurde schon in (i) bestimmt.

Bezug
                
Bezug
Bernoulli-Verteilung, Unabhaen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:10 So 11.01.2015
Autor: Melisa

Hallo luis52,
Und vielen Dank.

Kannst du mir bitte sagen, warum die Kovarianz-Formel nicht korrekt ist oder wo ich Fehler mache??

(Teilaufgabe (ii) habe ich schon korrigiert :) )

LG,
Melisa

Bezug
                        
Bezug
Bernoulli-Verteilung, Unabhaen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:29 So 11.01.2015
Autor: luis52


> Hallo luis52,
>  Und vielen Dank.

Gerne.

>  
> Kannst du mir bitte sagen, warum die Kovarianz-Formel nicht
> korrekt ist oder wo ich Fehler mache??

Mit dem Betrag muss man bekanntlich immer sehr vorsichtig umgehen. Bessser ist es, mittels der gemeinsamen Wahrscheinlichkeitsfunktion von $X+Y$ und $|X=Y|$ die Kovarianz zu berechnen.



Bezug
                                
Bezug
Bernoulli-Verteilung, Unabhaen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 So 11.01.2015
Autor: Melisa

jetzt habe ich aber Verständnisproblem, warum |X=Y| und nicht |X-Y|

Bezug
                                        
Bezug
Bernoulli-Verteilung, Unabhaen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 So 11.01.2015
Autor: luis52


> jetzt habe ich aber Verständnisproblem, warum |X=Y| und
> nicht |X-Y|

Weil =-Zeichen so nahe am --Zeichen angesiedelt ist;-). Ich meinte natuerlich $|X-Y| $.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]