matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenBerührpunkt Kurve-Tangente
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Trigonometrische Funktionen" - Berührpunkt Kurve-Tangente
Berührpunkt Kurve-Tangente < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berührpunkt Kurve-Tangente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 Mo 05.03.2007
Autor: Jun-Zhe

Aufgabe
Von A(0/1) aus wird an jede Kurve [mm]K_a [/mm]   [mm]f_a(x)=ax-ln(x)[/mm] die Tangente gelegt. Berechnen Sie die Koordinaten des Berührpunktes [mm]B_a[/mm] dieser Tangente.
Geben Sie die Ortslinie aller Berührpunkte [mm]B_a[/mm] an.

Da bald das Abitur ansteht wiederholen wir gerade einige Sachen im Unterricht, u.a. auch Analysis. Es ist aber schon ein Jahr her, dass wir das Thema hatten und irgendwie ist alles wieder aus meinem Hirn raus.
Wie verfahre ich hier nun am Besten? Hilft mir hier die Punkt-Steigungs-Formel weiter?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Berührpunkt Kurve-Tangente: Antwort
Status: (Antwort) fertig Status 
Datum: 22:47 Mo 05.03.2007
Autor: matter

Zunächst musst du die allgemeine Tangentengleichung formulieren.

Also m = f'(x) und dann noch den Punkt einsetzen um n zu erhalten.

Dann sind in der Tangentengleichung noch a und x. X erhälst du durch Gleichsetzen der Tangentengleichung mit der Funktionsgleichung.

Danmit sollte [mm] x=e^{-1} [/mm] sein. Jetzt hast du eine Tangengleichung abhängig von a die immer durch den geforderten Punkt geht. Ab hier sollte es einfach sein.

Bezug
                
Bezug
Berührpunkt Kurve-Tangente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:25 Mo 02.04.2007
Autor: LLcoolj

ihre antwort ist meiner meinung anch nicht richtig weil sie ja davon ausgehen dass der punkt P 0/1 sowohl auf der geraden wie auch auf f(x) liegt was aber net der fall ist......

Bezug
                        
Bezug
Berührpunkt Kurve-Tangente: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Mo 02.04.2007
Autor: schachuzipus

Hallo LLcoolj - richtig geschrieben? ;-)

Du hast recht, denn [mm] f_a(0) [/mm] ist gar nicht definiert.

Zur Berechnung des Berührpunktes kann man die allg. Tangentengleichung an einem Punkt [mm] B_a=(x_0/f_a(x_0)) [/mm] zu Hilfe nehmen:

[mm] t(x)=f_a(x_0)+f_a'(x_0)(x-x_0) [/mm]

Dazu [mm] f_a(x_0) [/mm] und [mm] f_a'(x_0) [/mm] berechnen und in t(x) einsetzen.

Dann weiß man, dass der Punkt P=(0/1) auf dem Graphen von t liegt,

also t(0)=1, das liefert das gesuchte [mm] x_0. [/mm]

Dieses nun noch in [mm] f_a [/mm] einsetzen und schon hat man den Berührpunkt.

Kontrolle [mm] B_a=(1/a) [/mm]


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]