matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieBerührpunkte von Netzen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Topologie und Geometrie" - Berührpunkte von Netzen
Berührpunkte von Netzen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berührpunkte von Netzen: begriffsfrage
Status: (Frage) überfällig Status 
Datum: 03:20 Do 22.10.2009
Autor: cycore

Aufgabe
Ist [mm] $x_{\alpha}$ [/mm] ein [mm] $\{F_\alpha\}$ [/mm] zugeordnetes gerichtetes System, so ist der [mm] $x_{\alpha}$ [/mm] zugeordnete Filter feiner als [mm] $\{F_\alpha\}$ [/mm] und hat die selben Berührungspunkte wie [mm] $x_{\alpha}$. [/mm] Die Berührungspunkte der [mm] $\{F_\alpha\}$ [/mm] zugeordneten gerichteten Systeme sind also Berührungspunkte von [mm] $\{F_\alpha\}$. [/mm]

Hallo, ich muss diesen Satz beweisen - der erste Teil ist ja klar (also das der filter feiner ist)...

Aber weder in dem Buch aus dem der Satz stammt noch sonstwo finde ich eine Definition zu Berührungspunkten eines Gerichteten Systems (Das ist wohl ein anderes Wort für Netz).
Hoffentlich weiß das jemand hier? Ich hab schon spekuliert, ob der letzte Satz vielleicht nicht zu beweisen ist sondern ebendie Definition ist?
oder ist es nicht vielmehr so das es für jeden Berührpunkt des Filters ein dem Filter zugeordnetes Netz existiert das gegen den Berührpunkt konvergiert!?!

Würde mich sehr freuen über Hilfe - LG cycore

        
Bezug
Berührpunkte von Netzen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:20 Fr 06.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Berührpunkte von Netzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:15 So 08.11.2009
Autor: cycore

für die die es interessiert - hab ne definition gefunden...
ein punkt hißt berührungspunkt eines netzes [mm] $\{x_\alpha\}_{\alpha \in A}$ [/mm] wenn es ein kofinales Teilsystem [mm] $B\subset [/mm] A$ gibt, für das [mm] $\{x_\beta\}_{\beta \in B}$ [/mm] konvergiert...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]