matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationBestimmte Integrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Bestimmte Integrale
Bestimmte Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmte Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:58 Mi 07.04.2010
Autor: Dauerkleber

Aufgabe
Berechnen Sie folgende bestimmte Integrale:

[mm] \integral_{-1}^{2}{\bruch{x}{x+3} dx} [/mm]

Hallo zusammen,

ist mir ja fast ein bisschen peinlich, aber ich komm nicht auf die Stannfunktion^^

Hab gedacht das internet würde mir helfen, aber die Stammfunktion die ich durch einen onlinerechner erhalten hab, scheint mir doch recht unschlüssig.
Sie lautet: x-3 log(x+3)  falls sie doch stimmen sollte, kann mir einer erklären warum?

In einer Übung bei uns hatten wir eine ähnliche aufg:
[mm] \integral_{}^{}{\bruch{2}{x+3} dx} [/mm]
bei ihr kam ich auf die Lösung: 2*ln(x+3)

kann ich bei der aktuellen aufgabe jetzt auch einfach sagen die stammfunktion lautet:  
x*ln(x+3)    ?

falls nicht benötige ich hilfe^^

gruß kleber

        
Bezug
Bestimmte Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 17:03 Mi 07.04.2010
Autor: angela.h.b.


> Berechnen Sie folgende bestimmte Integrale:
>  
> [mm]\integral_{-1}^{2}{\bruch{x}{x+3} dx}[/mm]

Hallo,

[mm] \bruch{x}{x+3}=\bruch{x+3-3}{x+3}= [/mm] 1 - [mm] 3*\bruch{1}{x+3}. [/mm]

das sollte beim Integrieren helfen...

> kann ich bei der aktuellen aufgabe jetzt auch einfach sagen die stammfunktion lautet:  
> x*ln(x+3)    ?

Diese Frage kannst Du Dir durch Ableiten selbst beantworten.


Gruß v. Angela


Bezug
        
Bezug
Bestimmte Integrale: Substitution
Status: (Antwort) fertig Status 
Datum: 18:15 Mi 07.04.2010
Autor: HJKweseleit

[mm]\integral_{-1}^{2}{\bruch{x}{x+3} dx}[/mm]

Falls du die Substitutionsregel kennst, ist die Sache furchtbar einfach:

In beiden Fällen setzt du t=Nenner=x+3, was sehr naheliegend ist, da der Nenner am meisten ärgert.

Als nächstes bildest du dt/dx = Ableitung von t nach x = (x+3)' =1. Daraus ergibt sich dann dt = 1*dx = dx, was hier besonders einfach ist.

Nun ersetzt du im Integral überall das x durch t, also wegen t=x+3 ist x=t-3, und das dx durch das dt. Es ergibt sich dann

[mm]\integral_{ }^{ }{\bruch{t-3}{t} dt}=\integral_{ }^{ }{(\bruch{t}{t}-\bruch{3}{t}) dt}=\integral_{ }^{ }{(1-\bruch{3}{t}) dt}= t-3*ln(t)=x+3-3*ln(x+3)=F(x)[/mm].

Dass meine Stammfunktion - abweichend von der angegebenen Lösung - vorne statt x-3 nun x+3 heißt, ist bedeutungslos, da es unendlich viele Stammfkt. gibt, die sich allerdings nur durch einen konstanten Summanden unterscheiden dürfen.

Zu den Grenzen: Um die musst du dich nicht kümmern, wenn du nur die Stammfkt. suchst und dann - so wie ich hier - rücksubstituiertst. Du integrierst dann einfach ohne Grenzen und setzt sie ganz zum Schluss wieder ein, indem du nun F(2)-F(-1) berechnest.

Willst du nicht rücksubstituieren, also mit t arbeiten, so musst du die Grenzen in dem Moment verändern, in dem du das dx durch das dt ersetzt. Wegen t=x+3 ergibt sich dann für die Obergrenze t=2+3=5 und für die Untergrenze t=-1+3=2, und du musst schreiben:

[mm]\integral_{-1}^{2}{\bruch{x}{x+3} dx}=\integral_{2}^{5}{\bruch{t-3}{t} dt}=\integral_{2}^{5}{(\bruch{t}{t}-\bruch{3}{t}) dt}=\integral_{2}^{5}{(1-\bruch{3}{t}) dt}= t-3*ln(t)=G(t)[/mm], wobei du jetzt G(5)-G(2) berechnest.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]