matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungBestimmtes Flächenstück
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Bestimmtes Flächenstück
Bestimmtes Flächenstück < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmtes Flächenstück: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:23 Sa 03.11.2007
Autor: th0mmy

Aufgabe
Graph schließt mit der x-Achse ein endliches Flächenstück ein. Man bestimme den Parameter k so, dass das Flächenstück A = [mm] \bruch{16}{3} [/mm]  hat.

[mm] r_2 (x) = \bruch{1}{2} x^2 - 2kx + 4k^2 - 4k [/mm]

Hallo erstmal :)
Also zum ersten das ist nicht meine Aufgabe sondern die meiner Freundin, aber die verzweifelt fast daran und deshalb hab ich beschlossen ihr Hilfe in Form von euch zu besorgen. Meine Integralrechenkünste gehen gegen 0^^.

Zum ersten hat sie die Stammfunktion bestimmt :
[mm] \bruch{1}{6} x^3 - kx^2 + 4k^2 x - 4kx [/mm]

Im Folgenden die Nullstellen:
[mm] 2k\pm\wurzel{8k - 4k^2} [/mm]

beim Einsetzen endet das Ganze dann irgendwann in einem totalen Rechenchaos, die letzte Zeile sieht folgendermaßen aus :

[mm] \bruch{16}{3} = \bruch{8}{3} k^2 \wurzel{8k - 4k^2} - \bruch{16}{3} k \wurzel{8k - 4k^2} [/mm]

Meine Frage jetzt: Stimmt das ganze? weiter auflösen nach k? Irgendwie einfacher zu lösen?

danke für eure Mühen
mfg
Tom

PS: ^^
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Bestimmtes Flächenstück: Antwort
Status: (Antwort) fertig Status 
Datum: 14:04 Sa 03.11.2007
Autor: MontBlanc

Hi,

also die Stammfunktion hast du richtig bestimmt, die Nullstellen - [mm] x_{n1} [/mm] und [mm] x_{n2} [/mm] auch.

Nun ist das Integral zu bestimmen:

[mm] \integral_{x_{n1}}^{x_{n2}}{f(x) dx}=\bruch{16}{3} [/mm]

= [mm] F(x_{n2})-F(x_{n1}) [/mm]

[mm] \bruch{16}{3}=\left[\bruch{1}{6}x_{n2}^3-k*x_{n2}^2+4k^2*x_{n2}-4kx\right]-\left[\bruch{1}{6}x_{n1}^3-k*x_{n1}^2+4k^2*x_{n1}-4kx\right] [/mm]

Du solltest k=1 als ergebnis bekommen, ich habs einfach mal MuPAD zum berechnen gegeben.

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]