matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenBestimmung Extrem/-Wendepunkte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Bestimmung Extrem/-Wendepunkte
Bestimmung Extrem/-Wendepunkte < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung Extrem/-Wendepunkte: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:26 Mo 28.11.2011
Autor: xilef

Aufgabe
Bestimmen Sie lokale Extrempunkte und Wendepunkte für die durch die folgenden Formeln definierten Funktionen:

b) y = [mm] \bruch{ln(x)}{x^{2}} [/mm]

Hallo,

ich weiß, wie ich theoretisch die lokalen Extrempunkte und Wendepunkte berechne, aber stimmt's auch?

Wenn ich die 1. Ableitung bilde:

y' = [mm] \bruch{\bruch{1}{x}\*\bruch{x^{2}}{1}-ln(x)*(2x)}{x^{4}} [/mm] = [mm] \bruch{1-2ln(x)}{x^{3}} [/mm] (vereinfacht)

Wenn ich die 1. Ableitung = 0 setze und nach x auflöse, dann komme ich auf

x = [mm] e^{\bruch{1}{2}} [/mm]

Ist das korrekt?

Ich weiß, da mir das Ergebnis bekannt ist, dass es ausschließlich einen Wendepunkt für diese Funktion gibt? Kann ich das vorher irgendwo dran sehen?

Eine 2. Ableitung davon zu bilden, stelle ich mir schwierig vor.

Vielen Dank für alle Tipps!

Viele Grüße
Felix

        
Bezug
Bestimmung Extrem/-Wendepunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 Mo 28.11.2011
Autor: TheBozz-mismo

Hallo Felix
> Bestimmen Sie lokale Extrempunkte und Wendepunkte für die
> durch die folgenden Formeln definierten Funktionen:
>  
> b) y = [mm]\bruch{ln(x)}{x^{2}}[/mm]
>  Hallo,
>  
> ich weiß, wie ich theoretisch die lokalen Extrempunkte und
> Wendepunkte berechne, aber stimmt's auch?
>  
> Wenn ich die 1. Ableitung bilde:
>  
> y' =
> [mm]\bruch{\bruch{1}{x}\*\bruch{x^{2}}{1}-ln(x)*(2x)}{x^{4}}[/mm] =
> [mm]\bruch{1-2ln(x)}{x^{3}}[/mm] (vereinfacht)
>  

Die Ableitung stimmt soweit.

> Wenn ich die 1. Ableitung = 0 setze und nach x auflöse,
> dann komme ich auf
>  
> x = [mm]e^{\bruch{1}{2}}[/mm]
>  
> Ist das korrekt?
>  

Ja, ist korrekt. Was kannst du daraus schließen bzw. was musst du noch überprüfen, ob es sich wirklich um ein Extremum handelt bzw. um welche Art?

> Ich weiß, da mir das Ergebnis bekannt ist, dass es
> ausschließlich einen Wendepunkt für diese Funktion gibt?
> Kann ich das vorher irgendwo dran sehen?
>  
> Eine 2. Ableitung davon zu bilden, stelle ich mir schwierig
> vor.

Ist gar nicht so schwierig, wenn du den Bruch als Produkt schreibst
[mm] f'(x)=x^{-3}*(1-2ln(x)) [/mm]
Diesen Term kannst du nach den Produktregel locker ableiten und schauen, ob Wendestellen existieren.

>  
> Vielen Dank für alle Tipps!
>  
> Viele Grüße
>  Felix


Gruß
TheBozz-mismo

Bezug
                
Bezug
Bestimmung Extrem/-Wendepunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:49 Mo 28.11.2011
Autor: xilef

Alles klar, das war doch einfacher als gedacht:

Die 2. Ableitung habe ich jetzt.

[mm] y''=-5x^{-4}+6x^{-4}ln(x) [/mm]
Diese nach x aufgelöst, dann bekomme ich auch das Ergebnis, welches für den Wendepunkt angegeben war:
[mm] x=e^{\bruch{5}{6}} [/mm]

Auf dem Weg dorthin habe ich [mm] x^{-4} [/mm] ausgeklammert. Woher weiß ich denn jetzt, dass ich an der Stelle x=0 kein Wendepunkt habe? Geht das nur über die 3. Ableitung, welche ich eh noch brauche, um zu wissen, ob es sich um ein Wendepunkt oder Sattelpunkt handelt?

Um auf deine Frage noch einzugehen, wenn ich [mm] x=e^{0.5} [/mm] in y'' einsetze, dann weiß ich ob tatsächlich ein Extremum an dieer Stelle existiert. Richtig?

Bezug
                        
Bezug
Bestimmung Extrem/-Wendepunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 00:00 Di 29.11.2011
Autor: TheBozz-mismo

Hallo nochmal

> Alles klar, das war doch einfacher als gedacht:
>  
> Die 2. Ableitung habe ich jetzt.
>  
> [mm]y''=-5x^{-4}+6x^{-4}ln(x)[/mm]

Richtig!

>  Diese nach x aufgelöst, dann bekomme ich auch das
> Ergebnis, welches für den Wendepunkt angegeben war:
> [mm]x=e^{\bruch{5}{6}}[/mm]
>  
> Auf dem Weg dorthin habe ich [mm]x^{-4}[/mm] ausgeklammert. Woher
> weiß ich denn jetzt, dass ich an der Stelle x=0 kein
> Wendepunkt habe?

Die Funktion ist an der Stelle x=0 nicht definiert(nicht durch 0 teilen), also kann dort auch kein Wendepunkt liegen
>Geht das nur über die 3. Ableitung,

> welche ich eh noch brauche, um zu wissen, ob es sich um ein
> Wendepunkt oder Sattelpunkt handelt?

Genau. Jetzt 3. Ableitung bilden und überprüfen, ob es sich wirklich um einen Wendepunkt handelt(Das ist der Fall, wenn die 3. Ableitung an der Stelle ungleich 0 ist)

>  
> Um auf deine Frage noch einzugehen, wenn ich [mm]x=e^{0.5}[/mm] in
> y'' einsetze, dann weiß ich ob tatsächlich ein Extremum
> an dieer Stelle existiert. Richtig?

Einsetzen alleine bringt dir nichts.
Ihr hattet doch bestimmt hinreichende und notwendige Kriterien für Extrema. Wenn [mm] f''(x_{1})<0 [/mm] und [mm] f(x_{1})=0, [/mm] dann existiert bei [mm] x_{1} [/mm] ein Maximum, wenn [mm] f''(x_{2})>0 [/mm] und [mm] f'(x_{2})=0, [/mm] dann ein Minimum.

Gruß
TheBozz-mismo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]