matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenBestimmung invarianter UR
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Bestimmung invarianter UR
Bestimmung invarianter UR < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung invarianter UR: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:25 Mo 04.06.2012
Autor: sarah_l92

Aufgabe
Bestimmen Sie die Invarianten Teilräume aus einer Zerlegung des Minimalpolynoms der folgenden Matrix A:
A= [mm] \pmat{1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 } [/mm]

hallo,

also die Bestimmung der Eigenwerte, der Eigenvektoren und des charakteristischen bzw. Minimalpolynoms (hier das gleiche) war nicht schwer.
EW: [mm] x_{1} [/mm] = 0  -->EV: (1,-1,0,0)
       [mm] x_{2} [/mm] = 1  -->EV: (0,0,1,-1)
Minimalpolynom: [mm] x^{2}(x^{2} [/mm] -2x +1)

Mir ist klar dass ich folgende Invariante Teilräume habe:
[mm] U_{0} [/mm] = {0}
[mm] U_{1}= [/mm] <(1,-1,0,0)>
[mm] U_{2}= [/mm] <(0,0,1,-1)>

Erste Frage: Ein invarianter Teilraum ist ja immer der ganze Raum. Mein Vektorraum hat die Dimension 4, meine Matrix den Rang 3, hab ich dann also einen Invarianten Unterraum [mm] U4=\IR^{3} [/mm] oder [mm] U4=\IR^{4} [/mm] ?? Ich komm mir grad selbst blöd vor bei der Frage, ich würde sagen [mm] U4=\IR^{3}, [/mm] aber ich bin mir nicht 100% sicher :)

Mein Hauptroblem ist nun aber die Bestimmung der zweidimensionalen Unterräume. Ich habe schon einige Beispiele gelesen, meist einfache mit 2x2 Matrizen, das hilft mir aber nicht weiter. Auch Beispiele in denen das Minimalpolynom schön in Linearfaktoren zerfällt, das ist aber leider auch nicht der Fall.

Ich hoffe ihr könnt mir weiterhelfen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Bestimmung invarianter UR: Antwort
Status: (Antwort) fertig Status 
Datum: 07:22 Di 05.06.2012
Autor: fred97


> Bestimmen Sie die Invarianten Teilräume aus einer
> Zerlegung des Minimalpolynoms der folgenden Matrix A:
>  A= [mm]\pmat{1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 }[/mm]
>  
> hallo,
>  
> also die Bestimmung der Eigenwerte, der Eigenvektoren und
> des charakteristischen bzw. Minimalpolynoms (hier das
> gleiche) war nicht schwer.
>  EW: [mm]x_{1}[/mm] = 0  -->EV: (1,-1,0,0)
>         [mm]x_{2}[/mm] = 1  -->EV: (0,0,1,-1)
>  Minimalpolynom: [mm]x^{2}(x^{2}[/mm] -2x +1)

Ich habs nicht nachgerechnet. Wenns stimmt so ist

          [mm] \IR^4=Kern(A^2) \oplus Kern((A-I)^2) [/mm]


FRED

>  
> Mir ist klar dass ich folgende Invariante Teilräume habe:
>  [mm]U_{0}[/mm] = {0}
>  [mm]U_{1}=[/mm] <(1,-1,0,0)>
>  [mm]U_{2}=[/mm] <(0,0,1,-1)>
>  
> Erste Frage: Ein invarianter Teilraum ist ja immer der
> ganze Raum. Mein Vektorraum hat die Dimension 4, meine
> Matrix den Rang 3, hab ich dann also einen Invarianten
> Unterraum [mm]U4=\IR^{3}[/mm] oder [mm]U4=\IR^{4}[/mm] ?? Ich komm mir grad
> selbst blöd vor bei der Frage, ich würde sagen
> [mm]U4=\IR^{3},[/mm] aber ich bin mir nicht 100% sicher :)
>  
> Mein Hauptroblem ist nun aber die Bestimmung der
> zweidimensionalen Unterräume. Ich habe schon einige
> Beispiele gelesen, meist einfache mit 2x2 Matrizen, das
> hilft mir aber nicht weiter. Auch Beispiele in denen das
> Minimalpolynom schön in Linearfaktoren zerfällt, das ist
> aber leider auch nicht der Fall.
>  
> Ich hoffe ihr könnt mir weiterhelfen
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]