matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesBetragsungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - Betragsungleichung
Betragsungleichung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Betragsungleichung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:43 Do 17.05.2007
Autor: Lauraneedshelp

Aufgabe
Lösen sie folgende Ungleichungen und skizzieren Sie den Sachverhalt!
|x+2| [mm] \ge [/mm] 1/2|x-1|

Ich soll oben genannte Ungleichung lösen und hab dazu erstmal die Fälle ermittelt:

|x+2| [mm] \ge [/mm] 0 -> x [mm] \ge [/mm] -2
|x-1| [mm] \ge [/mm] 0 -> x [mm] \ge [/mm] 1
-> möglich (blaue Linien)

|x+2| [mm] \ge [/mm] 0 -> x [mm] \ge [/mm] -2
|x-1| [mm] \le [/mm] 0 -> x [mm] \le [/mm] 1
-> möglich (grüne Linien)

|x+2| [mm] \le [/mm] 0 -> x [mm] \le [/mm] -2
|x-1| [mm] \le [/mm] 0 ->  x [mm] \le [/mm] 1
-> möglich (rote Linien)

|x+2| [mm] \le [/mm] 0 -> x [mm] \le [/mm] -2
|x-1| [mm] \ge [/mm] 0 ->  x [mm] \ge [/mm] 1
-> nicht möglich

[Dateianhang nicht öffentlich]

Daraufhin ergeben sich folgende Fälle:

1. Fall: [mm] (-\infty;-2) [/mm]
-(x+2) [mm] \ge [/mm] -1/2(x-1) -> x [mm] \le [/mm] -5

2. Fall: [-2;1]
(x+2) [mm] \ge [/mm] -1/2(x-1) -> x [mm] \ge [/mm] -1

3. Fall: [mm] (1;+\infty) [/mm]
(x+2) [mm] \ge [/mm] 1/2(x-1) -> x [mm] \ge [/mm] -5

Daraufhin habe ich die -5 als Lösung ausgeschlossen, weil es ja unmöglich ist, dass die Lösung [mm] \ge [/mm] -5 ist und gleichzeitig [mm] \le [/mm] -5.

Nun steht aber in der Lösung, dass auch die -1 als Lösung ausgeschlossen ist. Das würde ja nur gehen, wenn die -1 beim 2. Fall rauskommen würde, da also das Minuszeichen vor den ersten Betrag gesetzt wird und nicht vor den zweiten: -(x+2) [mm] \ge [/mm] 1/2(x-1) -> x [mm] \le [/mm] -1

Aber warum ist das so und wie entscheidet sich, wann vor welchen Betrag -1 geschrieben wird?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Betragsungleichung: doppelt
Status: (Antwort) fertig Status 
Datum: 15:10 Do 17.05.2007
Autor: Loddar

Hallo Laura,

[willkommenmr] !!!


Du hast in Deinen Fallunterscheidungen z.B. den Fall $x \ [mm] \red{=} [/mm] \ 1$ doppelt vertreten.

Wenn Du im ersten Fall (völlig richtig) ansetzt $x \ [mm] \red{\ge} [/mm] \ 1$ , darfst Du im 2. Fall lediglich $x \ [mm] \red{<} [/mm] \ 1$ berücksichtigen.


Gruß
Loddar


Bezug
                
Bezug
Betragsungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:51 Fr 18.05.2007
Autor: Lauraneedshelp

Hallo Loddar,

vielen Dank für deine Antwort. Leider versteh ich immernoch nicht, wie sich nun entscheidet, vor welchen Betrag ich wann das Minuszeichen setze.

Beim ersten Fall habe ich vor jeden Betrag ein Minus gesetzt, weil alles im negativen Bereich liegt. Beim 3. Fall hab ich vor keinen Betrag ein Minus gesetzt, weil alles im positiven Bereich liegt.

Wie ist das aber nun im zweiten Fall, da liegen die Beträge ja in beiden Bereichen?

Bezug
                        
Bezug
Betragsungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 Fr 18.05.2007
Autor: M.Rex

Hallo

Hier mal die Definition der Betragsfunktion:

[mm] |x|=\begin{cases} x, & \mbox{für } x\ge0 \\ -x, & \mbox{für } x<0 \end{cases} [/mm]

Also: immer dann, wenn der Term innerhalb der Betrgsstriche negativ wird, setze stattdessen eine Minusklammer, ist der Term grösser oder gleich Null, kannst du sie "wegfallen" lassen.

Also hier:

[mm] |x+2|=\begin{cases} x+2, & \mbox{für } x+2\ge0 \\ -(x+2), & \mbox{für } x+2<0 \end{cases} [/mm]


Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]