matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikBewegung Elektron
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "HochschulPhysik" - Bewegung Elektron
Bewegung Elektron < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bewegung Elektron: Geschwindigkeit
Status: (Frage) beantwortet Status 
Datum: 11:28 Di 03.11.2009
Autor: MatheFrager

Aufgabe
Ein Elektron bewegt sich auf einer Bahnkurve mit dem Ortsvektor

[mm] \vec{r} [/mm] = [mm] \bruch{a}{2} \vektor{2cos(bt) \\ sin(bt) \\ -\wurzel{3}sin(bt)} [/mm]

a und b seien Konstanten!
a)Berechnen Sie den Betrag der Geschwindigkeit.
b)Berechnen Sie den Winkel zwischen r und v.

.....also bei b) muss ja der Winkel 90 Grad sein, aber wie rechne ich dahin???
bei a) ist die Lösung angegeben......v=a*b !!!!?????!!!!! Wie kommt´s....?
Wenn ich die Ortsfunktion ableite komme ich da auf was echt laaanges in Abhängigkeit von t und NICHT a*b!!!!   BITTE HILFE

        
Bezug
Bewegung Elektron: zu Aufg. a)
Status: (Antwort) fertig Status 
Datum: 12:11 Di 03.11.2009
Autor: Herby

Hallo,


> Ein Elektron bewegt sich auf einer Bahnkurve mit dem
> Ortsvektor
>  
> [mm]\vec{r}[/mm] = [mm]\bruch{a}{2} \vektor{2cos(bt) \\ sin(bt) \\ -\wurzel{3}sin(bt)}[/mm]
>  
> a und b seien Konstanten!
>  a)Berechnen Sie den Betrag der Geschwindigkeit.
>  b)Berechnen Sie den Winkel zwischen r und v.
>  .....also bei b) muss ja der Winkel 90 Grad sein, aber wie
> rechne ich dahin???
>  bei a) ist die Lösung angegeben......v=a*b !!!!?????!!!!!
> Wie kommt´s....?

leite den Ortsvektor nach der Zeit ab (denk daran, dass b eine Konstante ist!) und bestimme dann den Betrag.

>  Wenn ich die Ortsfunktion ableite komme ich da auf was
> echt laaanges in Abhängigkeit von t und NICHT a*b!!!!  
> BITTE HILFE

warum? z.B. ist [mm] (2\cos(bt))'=-2b\sin(bt) [/mm]

Lg
Herby



Bezug
        
Bezug
Bewegung Elektron: Antwort
Status: (Antwort) fertig Status 
Datum: 12:26 Di 03.11.2009
Autor: leduart

Hallo
den Winkel rechnest du mit dem Skalarprodukt aus.
schreib immer deine Rechnungen auf, damit wir sehen ,wo du falsch liegst, dann ist helfen einfacher.
Gruss leduart

Bezug
                
Bezug
Bewegung Elektron: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 Di 03.11.2009
Autor: MatheFrager

also gut, das hab ich raus:

betrag von v= wurzel aus: [mm] a^2*b^2*sin^2(bt)-0,5*a^2*b^2*cos^2(bt) [/mm]

....eben alles abgeleitet und einmal [mm] cos^2(bt) [/mm] durch [mm] 1-sin^2(bt) [/mm] ersetzt!

ES SOLL ABER RAUSKOMMEN: betrag von v= a*b !!!!
wie kann das sein?!

Bezug
                        
Bezug
Bewegung Elektron: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 Di 03.11.2009
Autor: Steffi21

Hallo

du bekommst [mm] \vektor{-2b*sin(bt) \\ b*cos(bt) \\ -\wurzel{3}b*cos(bt)} [/mm]

jetzt Betrag machen

[mm] \wurzel{4b^{2}*sin^{2}(bt)+b^{2}*cos^{2}(bt)+3b^{2}*cos^{2}(bt)} [/mm]

[mm] \wurzel{4b^{2}*sin^{2}(bt)+4b^{2}*cos^{2}(bt)} [/mm]

[mm] \wurzel{4b^{2}*[sin^{2}(bt)+cos^{2}(bt)]} [/mm]

[mm] \wurzel{4b^{2}} [/mm]

somit bekommst du dein Ergebnis für v

Steffi

Bezug
                                
Bezug
Bewegung Elektron: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 Di 03.11.2009
Autor: MatheFrager

Erstmal danke!!!! Aber was ist mit dem Vorfaktor a/2 (siehe Aufgabenstellung) ?? Den muss man doch reinrechnen, oder? Ansonsten ist die rechnung korrekt, ich verstehe das Ergebnis des Professors v=a*b genau nicht!!



Bezug
                                        
Bezug
Bewegung Elektron: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Di 03.11.2009
Autor: Herby

Hallo,

> Erstmal danke!!!! Aber was ist mit dem Vorfaktor a/2 (siehe
> Aufgabenstellung) ?? Den muss man doch reinrechnen, oder?
> Ansonsten ist die rechnung korrekt, ich verstehe das
> Ergebnis des Professors v=a*b genau nicht!!

ja, ganz genau:

[mm] v=\bruch{a}{2}*\wurzel{4b^2}=a*b [/mm]


Lg
Herby


Bezug
                                                
Bezug
Bewegung Elektron: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 Di 03.11.2009
Autor: MatheFrager

aaaaaaaa-haaaaaa !!!! danke !!!!
kleine Frage hätt ich noch:
wa-rum (!!!) muss man den vorfaktor nicht VOR dem ableiten reinrechnen????
weiß das einer?
weil sonst krieg ich ein anderes ergebnis, oder hab ich da vermutlich einen rechenfehler drin?

Bezug
                                                        
Bezug
Bewegung Elektron: Antwort
Status: (Antwort) fertig Status 
Datum: 20:45 Di 03.11.2009
Autor: Herby

Hallo,

weil der Vorfaktor nicht von der Zeit abhängig ist; er ist konstant. Allgemein gilt doch auch:

[mm] (C_1*f(x))'=C_1*f'(x) [/mm] mit einer Konstanten [mm] C_1 [/mm]

Bsp.: [mm] (a*x^2)'=a*(x^2)'=a*(2x)=2ax [/mm]


Lg
Herby

Bezug
                
Bezug
Bewegung Elektron: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:40 Do 05.11.2009
Autor: matthies888

ich hab mal ne frage zu der bestimmung des winkels......ich hab doch am ende den betrag von v= a*b ...... wie kann ich jezz die vektoren  [mm] \vec{v} [/mm] und [mm] \vec{r} [/mm] skalar multiplizieren? bzw wie bekomme ich vom betrag von v auf den vektor v?

Bezug
                        
Bezug
Bewegung Elektron: Antwort
Status: (Antwort) fertig Status 
Datum: 19:46 Do 05.11.2009
Autor: Herby

Hallo Matthies,


der Geschwindigkeitsvektor ist doch genau der differenzierte Ortsvektor

[mm] \vec{v}=\bruch{d}{dt}\vec{r}=.... [/mm]


Lg
Herby

Bezug
                                
Bezug
Bewegung Elektron: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:48 Do 05.11.2009
Autor: matthies888

ja klar......-.-........danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]