matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungBewegungsinvariante
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra / Vektorrechnung" - Bewegungsinvariante
Bewegungsinvariante < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bewegungsinvariante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 Mo 03.04.2006
Autor: hurdel

Aufgabe
Aufgabe
Für ein Dreieck a,b,c in [mm] \IR^{2} [/mm] sei s:=  1/3(a+b+c). dann ist die Abbildung  [mm] (a,b,c)\mapsto|s-a| [/mm] + |s-b|+|s-c| eine Bewegungsinvariante

brauche sehr dringend hilfe. ich weiss doch, dass [mm] |x+y+z|\ge [/mm] |x|+|y|+|z|. wenn hier das gleichheitszeichen stehen würde, wäre alles klar. aber so?

habe diese frage in keinem anderen forum gestellt

        
Bezug
Bewegungsinvariante: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 Mo 03.04.2006
Autor: DAB268


> Aufgabe
> Für ein Dreieck a,b,c in [mm]\IR^{2}[/mm] sei s:=  1/3(a+b+c). dann
> ist die Abbildung  [mm](a,b,c)\mapsto|s-a|[/mm] + |s-b|+|s-c| eine
> Bewegungsinvariante
>
> brauche sehr dringend hilfe. ich weiss doch, dass
> [mm]|x+y+z|\ge[/mm] |x|+|y|+|z|. wenn hier das gleichheitszeichen
> stehen würde, wäre alles klar. aber so?

Stimmt ja auch nicht.

Gegenbeispiel:
$|5+-3+6|=8$ und das ist NICHT [mm] $\ge [/mm] 14=|5|+|-3|+|6|$

Richtig ist es so: [mm] $|x+y+z|\le [/mm] |x|+|y|+|z|$

Hoffe das Hilft dir.


MfG
DAB268

Bezug
        
Bezug
Bewegungsinvariante: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:07 Mo 03.04.2006
Autor: hurdel

das meinte ich natürlich auch. aber das ändert nichts an der frage im allgemeinen...

Bezug
                
Bezug
Bewegungsinvariante: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 Mo 03.04.2006
Autor: SEcki


> das meinte ich natürlich auch. aber das ändert nichts an
> der frage im allgemeinen...

Rückfrage: wie ist denn Bewegung bei euch definiert? Für Translationen [m]x\mapsto x+h[/m] setzte doch einfach mal ein.

SEcki

Bezug
                        
Bezug
Bewegungsinvariante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:52 Di 04.04.2006
Autor: hurdel

Bewegung ist geg durch x-> Ax+q
mit  q fester vektor und A eine orthogonale matrix.

was muss ich jetz wo einsetzen? ich steh irgendwie total auf dem schlauch und hab in 3 stunden prüfung... schwitz...

Bezug
                                
Bezug
Bewegungsinvariante: Antwort
Status: (Antwort) fertig Status 
Datum: 12:11 Di 04.04.2006
Autor: leduart

Hallo
Eine orthogonale Matrix mit det=1 , also orthonormal ist eigentlich ne Bewegung (Drehung), die ändert den Betrag eines Vektors nicht, d.h.
[mm] |A*\vec{x}|=|\vec{x}| [/mm] und die Transation ändert natürlich an |s-a| nichts!
viel Spass in der Prüfung!
Gruss leduart

Bezug
                                        
Bezug
Bewegungsinvariante: kl. Ungenauigkeit
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:59 Di 04.04.2006
Autor: statler


>  Eine orthogonale Matrix mit det=1 , also orthonormal ist
> eigentlich ne Bewegung (Drehung), die ändert den Betrag
> eines Vektors nicht, d.h. [mm] |A*\vec{x}=|\vec{x}| [/mm] und die Transation ändert
> natürlich an |s-a| nichts!
>  viel Spass in der Prüfung!
>  Gruss leduart

Eine orthogonale Matrix hat det = [mm] \pm1 [/mm] , also orthogonal ist
eigentlich ne Bewegung (Drehung od. Spiegelung), die ändert den Betrag
eines Vektors nicht usw. usw.

Ebenfalls toitoitoi aus HH-Harburg
Dieter



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]