matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationBeweis Flächeninhalt Integral
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Beweis Flächeninhalt Integral
Beweis Flächeninhalt Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Flächeninhalt Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:15 Mo 08.07.2013
Autor: Tcd

Aufgabe
Sei f : [a;∞) eine uneigentlich absolut integrierbare Regelfunktion. Beweisen Sie:
[mm] \limes_{w\rightarrow\infty} \integral_{a}^{∞}{f(x) dx} [/mm] f(x) cos(wx)dx = 0
Hinweis: Zeigen Sie, dass [mm] \limes_{w\rightarrow\infty}\integral_{a}^{b} [/mm] f(x) cos(wx)dx = 0 für alle Treppenfunktionen f : [a; b] -> R gilt.
Dehnen Sie diese Aussage auf Regelfunktionen aus. Zerlegen Sie schließlich das Integrationsintervall [a;∞)
geeignet in [a; b] und [b;∞) um die Behauptung zu beweisen.


Ich habe ersteres bereits mit partieller Integration und Substitution versucht, bin jedoch dadran gescheitert, dass ich statt dem Cosinus stets den Sinus erhielt und der geht gegen 1 mit [mm] \limes_{w\rightarrow\infty}. [/mm] Den Cosinus in der Stammfunktion zu haben wäre sicherlich hilfreich, da f(x) beliebig ist und der restliche Term somit 0 sein muss, damit das Integral auch 0 ist, was bei [mm] \limes_{w\rightarrow\infty}cos(wx) [/mm] gegeben ist, auf dem ich mit den Integrationsmethoden nicht komme.

Vielen dank für die Hilfe! :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis Flächeninhalt Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 07:02 Di 09.07.2013
Autor: Helbig


>  Hinweis: Zeigen Sie, dass
> [mm]\limes_{w\rightarrow\infty}\integral_{a}^{b}[/mm] f(x) cos(wx)dx
> = 0 für alle Treppenfunktionen f : [a; b] -> R gilt.
>  Dehnen Sie diese Aussage auf Regelfunktionen aus. Zerlegen
> Sie schließlich das Integrationsintervall [a;∞)
>  geeignet in [a; b] und [b;∞) um die Behauptung zu
> beweisen.
>  
> Ich habe ersteres bereits mit partieller Integration und
> Substitution versucht, bin jedoch dadran gescheitert, dass
> ich statt dem Cosinus stets den Sinus erhielt und der geht
> gegen 1 mit [mm]\limes_{w\rightarrow\infty}.[/mm]

Hallo Tcd,

der Hinweis liest sich für mich anders! Zeige [mm] $\lim_{w\to\infty} \int_a^b [/mm] f(x) [mm] \cos [/mm] (wx) dx = 0$ für konstante Funktionen, dann für Treppenfunktionen, dann für Regelfunktionen.

Gruß,
Wolfgang

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]