matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBeweis Formel mit Fakultät
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Beweis Formel mit Fakultät
Beweis Formel mit Fakultät < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Formel mit Fakultät: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 Fr 03.09.2010
Autor: steppenhahn

Aufgabe
Beweise: [mm] $\left(\frac{n+1}{2}\right)^{n}\ge [/mm] n!$.
Hinweis: Benutze die bernoullische Ungleichung.

Hallo!

Ich habe versucht, diese Aufgabe zu lösen.
Vor allem wundert mich, dass ich die bernoullische Ungleichung anwenden soll, die ja eigentlich viel zu grob abschätzt.
Mit dem binomischen Lehrsatz habe ich es folgendermaßen hinbekommen:

IA: n = 0 ok.
Induktionsschritt: [mm]n\to n+1[/mm]
[mm]\left(\frac{(n+1)+1}{2}\right)^{n+1} = \frac{1}{2^{n+1}}*\sum_{k=0}^{n+1}\vektor{n+1\\ k}*(n+1)^{k}\ge \frac{1}{2^{n+1}}*\left[\vektor{n+1\\ n}*(n+1)^{n} + \vektor{n+1\\ n+1}*(n+1)^{n+1}\right][/mm]

[mm]= \frac{1}{2^{n+1}}*2*(n+1)^{n+1} = (n+1)*\left(\frac{n+1}{2}\right)^{n} \overset{IV}{\ge} (n+1)*n! = (n+1)![/mm].

Gibt es eine "direkte" Variante, die auch irgendwie die bernoullische Ungleichung benutzt?
Vielen Dank für Eure Hilfe!

Grüße,
Stefan

        
Bezug
Beweis Formel mit Fakultät: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Fr 03.09.2010
Autor: abakus


> Beweise: [mm]\left(\frac{n+1}{2}\right)^{n}\ge n![/mm].
>  Hinweis:
> Benutze die bernoullische Ungleichung.
>  Hallo!
>  
> Ich habe versucht, diese Aufgabe zu lösen.
>  Vor allem wundert mich, dass ich die bernoullische
> Ungleichung anwenden soll, die ja eigentlich viel zu grob
> abschätzt.
>  Mit dem binomischen Lehrsatz habe ich es folgendermaßen
> hinbekommen:
>  
> IA: n = 0 ok.
>  Induktionsschritt: [mm]n\to n+1[/mm]
>  
> [mm]\left(\frac{(n+1)+1}{2}\right)^{n+1} = \frac{1}{2^{n+1}}*\sum_{k=0}^{n+1}\vektor{n+1\\ k}*(n+1)^{k}\ge \frac{1}{2^{n+1}}*\left[\vektor{n+1\\ n}*(n+1)^{n} + \vektor{n+1\\ n+1}*(n+1)^{n+1}\right][/mm]
>  
> [mm]= \frac{1}{2^{n+1}}*2*(n+1)^{n+1} = (n+1)*\left(\frac{n+1}{2}\right)^{n} \overset{IV}{\ge} (n+1)*n! = (n+1)![/mm].
>  
> Gibt es eine "direkte" Variante, die auch irgendwie die
> bernoullische Ungleichung benutzt?
>  Vielen Dank für Eure Hilfe!
>  
> Grüße,
>  Stefan

Hallo,
das erste Glied der linken Seite lautet beim binomischen Satz [mm] (\bruch{n}{2})^n [/mm] (also n gleiche Faktoren [mm] \bruch{n}{2}). [/mm]
Der Term n! hat die Faktoren von 1 bis n; diese Faktoren besitzen einen Mittelwert m. Die anderen Faktoren der Fakultät lassen sich von m aus gesehen schreiben als m-1, m+1, m-2, m+2 ... (oder - je nachdem, om m selbst eine natürliche Zahl ist oder nicht- auch als m-0,5; m+0,5; m-1,5; m+1,5 usw.
Klingt nach einer Abschätzung über die dritte binomische Formel, oder?
Vermutlich muss aus der zweite Summand aus dem binomischen Satz noch einbezogen werden.
Gruß Abakus

Bezug
        
Bezug
Beweis Formel mit Fakultät: Antwort
Status: (Antwort) fertig Status 
Datum: 00:03 Sa 04.09.2010
Autor: reverend

Hallo Stefan,

ich sehe auch keinen Weg, der am Haus von Jakob Bernoulli einkehrt.

Die Idee von abakus geht aber auch ohne das Binomialgedöns.

Für gerade n=2k untersuchst Du, ob bei der Ausmultiplikation der Fakultät "von außen" folgendes gilt:

[mm] \left(\bruch{n+1}{2}\right)^\blue{2}\ge{a(n-a+1)} [/mm]

pardon, da fehlte das Quadrat!

Dabei ist [mm] a\in\IN, a\le\bruch{n+1}{2} [/mm]

Das ist leicht zu zeigen. Und wenn mans dann recht bedenkt, hat man die ungeraden n=2k+1 doch gleich mit erledigt, auch wenn man den alleinstehenden "mittleren Faktor" [mm] k+1=\bruch{n+1}{2} [/mm] eigentlich nicht hätte quadrieren müssen, um die einzige Gleichheit zu finden.

Alles klar?
Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]