matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-TransformationBeweis Homomorph. surjektiv
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Fourier-Transformation" - Beweis Homomorph. surjektiv
Beweis Homomorph. surjektiv < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Homomorph. surjektiv: Tipp, Idee
Status: (Frage) überfällig Status 
Datum: 13:06 So 23.05.2010
Autor: kegel53

Aufgabe
Sei A eine endliche abelsche Gruppe und [mm] \hat{A} [/mm] die zugehörige duale Gruppe, d.h. die Menge aller Charaktere von A.
Weiter seien [mm] l^2(A) [/mm] und [mm] l^2(\hat{A}) [/mm] zwei Hilberträume, die mit [mm] \IC^{A} [/mm] bzw. [mm] \IC^{\hat{A}} [/mm] übereinstimmen.
Zudem gilt: [mm] \langle{g},h\rangle=\langle{\hat{g}},\hat{h}\rangle [/mm] für alle [mm] g,h\in{l^2(A)}. [/mm]

Sei nun [mm] \Phi:l^2(A)\rightarrow{l^2(\hat{A})} [/mm] mit [mm] f\mapsto{\hat{f}} [/mm] ein Homomorphismus.
Weisen Sie die Injektivität und Surjektivität des Homomorphismus nach.

Tag Leute,
obige Aufgabe ist eigentlich ein Teil eines Beweises, den ich versuche zu verstehen. Naja also ich leg mal los.
Injektivität:
Es handelt sich bei [mm] \Phi [/mm] um eine Isometrie, denn es gilt: [mm] ||\Phi(f)||^2=<\Phi(f),\Phi(f)>=<\hat{f},\hat{f}>==||f||^2 [/mm]

Damit ist insbesondere [mm] Kern(\Phi)={0} [/mm] und somit [mm] \Phi [/mm] injektiv.


Surjektivität:
Hierbei hab ich von fred97 bereits den Tipp bekommen ich solle die inverse Fourier-Transformation verwenden.

Ich weiß allerdings nicht so recht, was man darunter versteht geschweige denn wie ich damit die Surjektivität nachrechnen kann.
Es wär also echt toll, wenn mir da jemand weiterhelfen könnte und etwas Licht ins Dunkel bringt.
Besten Dank schon mal!!


        
Bezug
Beweis Homomorph. surjektiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:33 Mo 24.05.2010
Autor: kegel53

Hat keiner an kleinen Tipp wie ich die inverse Fourier.Transformation für die Surjektivitätä nutzen kann?! Wär echt toll!

Bezug
        
Bezug
Beweis Homomorph. surjektiv: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Di 25.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]