matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationBeweis Integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Beweis Integration
Beweis Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Di 08.03.2011
Autor: kushkush

Aufgabe
Es soll gezeigt werden, dass die Behauptung:

[mm] $\integral_{a}^{b}f(x)dx [/mm] + [mm] \integral_{b}^{c} [/mm] f(x)dx = [mm] \integral_{a}^{c}f(x)dx$ [/mm]

mit $a<b<c $ für alle $a,b,c [mm] \in \IR$ [/mm] gilt.


Hallo,


[mm] $\integral_{a}^{b}f(x)dx [/mm] + [mm] \integral_{b}^{c} [/mm] f(x)dx= [mm] F(b)-F(a)+F(c)-F(b)=F(c)-F(a)=\integral_{a}^{c}f(x)dx$ [/mm]


reicht das bereits?


Ich habe diese Frage in keinem anderen Forum gestellt.


Danke und Gruss

kushkush

        
Bezug
Beweis Integration: das reicht
Status: (Antwort) fertig Status 
Datum: 18:53 Di 08.03.2011
Autor: Loddar

Hallo!


Ja, das reicht m.E. so.


Gruß
Loddar


Bezug
                
Bezug
Beweis Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:56 Di 08.03.2011
Autor: kushkush

HallO!

<Ja

Danke.


Gruss

kushkush

Bezug
                        
Bezug
Beweis Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:34 So 27.03.2011
Autor: kushkush

Hallo,


diese Lösung stimmt nicht weil die Stetigkeit von f nicht gegeben ist!



Gruss

kushkush

Bezug
                                
Bezug
Beweis Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:27 Mo 28.03.2011
Autor: angela.h.b.


> diese Lösung stimmt nicht weil die Stetigkeit von f nicht
> gegeben ist!

Hallo,

das ist ein nettes Beispiel dafür, daß es lohnenswert ist, den genauen Aufgabentext mit dem gemachten Voraussetzungen eingehend zu studieren - und auch mitzuteilen.

Die Eigenschaften der Funktion f überließest Du der Fantasie der Beteiligten - mit der Stammfunktion kann man natürlich nur argumentieren, wenn es eine gibt.
(Und wenn die Funktion f überhaupt nicht integrierbar ist, platzt die komplette Aufgabe...)

Gruß v. Angela


Bezug
        
Bezug
Beweis Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 08:21 Mo 28.03.2011
Autor: fred97


> Es soll gezeigt werden, dass die Behauptung:
>  
> [mm]\integral_{a}^{b}f(x)dx + \integral_{b}^{c} f(x)dx = \integral_{a}^{c}f(x)dx[/mm]
>  
> mit [mm]a
>  
> Hallo,
>
>
> [mm]\integral_{a}^{b}f(x)dx + \integral_{b}^{c} f(x)dx= F(b)-F(a)+F(c)-F(b)=F(c)-F(a)=\integral_{a}^{c}f(x)dx[/mm]
>  
>
> reicht das bereits?


Ich glaube nicht. Was machst Du , wenn f keine Stammfunktion besitzt ?

Dann mußt Du auf die Definition zurück: Ober-, Untersummen oder Zwischensummen.

FRED

>  
>
> Ich habe diese Frage in keinem anderen Forum gestellt.
>  
>
> Danke und Gruss
>  
> kushkush


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]