matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBeweis: Maximum von Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Beweis: Maximum von Mengen
Beweis: Maximum von Mengen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis: Maximum von Mengen: Frage
Status: (Frage) beantwortet Status 
Datum: 17:21 Mi 04.05.2005
Autor: whitesand

Hi, ich habe folgendes kleines Problem:

Ich soll beweisen, wenn M $ [mm] \subset \IZ [/mm] $ und die Menge M nach unten bzw. nach oben beschränkt ist, so existiert min(M) [mm] \in [/mm] M bzw. max(M) [mm] \in [/mm] M.

Im Grunde ist mir klar, dass die Teilmenge M ein Minimum bzw. ein Maximum hat, nur fehlt mir die zündende Idee wie ich dies auch beweisen kann.

Vielleicht habt ihr eine Idee

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis: Maximum von Mengen: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 17:31 Mi 04.05.2005
Autor: Hanno

Hallo Thomas!

Nehmen wir an, $M$ sei nach unten beschränkt, dann existiert also ein [mm] $m\in\IZ$ [/mm] mit $x>m$ für alle [mm] $x\in [/mm] M$. Nehmen wir nun an, die Menge $M$ sei nicht leer, ferner [mm] $x\in [/mm] M$ beliebig gewählt. Da $x$ nicht das kleinste Element ist, gibt es ein [mm] $x'\in [/mm] M$ mit $x'<x$. Dabei ist [mm] $x-x'\geq [/mm] 1$. Da auch $x'$ nicht das kleinste Element von $M$ sein kann, existiert ferner ein [mm] $x''\in [/mm] M$ mit [mm] $x''

Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]