matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBeweis für Grenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Beweis für Grenzwert
Beweis für Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis für Grenzwert: benötige dringend Hilfe
Status: (Frage) beantwortet Status 
Datum: 21:22 Sa 27.05.2006
Autor: belgarda

Aufgabe
Beweisen Sie folgenden Sachverhalt. Ist [mm] (a_{n})_{n} [/mm] eine monotone Folge reeller Zahlen und ist außerdem  [mm] \summe_{n=1}^{\infty}a_{n} [/mm] < [mm] \infty, [/mm] dann muss  [mm] \limes_{n\rightarrow\infty} [/mm] n [mm] a_{n}=0 [/mm] gelten.
Ich habe diese Frage in kein anderes Forum gestellt.

Hab leider keine Ahnung wie ich hier rangehen soll. Ich hoffe, ihr könnt mir helfen, ich muss die Aufgabe aber halt leider in einem Tag schon haben.
Danke, belgarda

        
Bezug
Beweis für Grenzwert: Beweis durch Widerspruch
Status: (Antwort) fertig Status 
Datum: 22:57 Sa 27.05.2006
Autor: leduart

Hallo belgarda
> Beweisen Sie folgenden Sachverhalt. Ist [mm](a_{n})_{n}[/mm] eine
> monotone Folge reeller Zahlen und ist außerdem  
> [mm]\summe_{n=1}^{\infty}a_{n}[/mm] < [mm]\infty,[/mm] dann muss  
> [mm]\limes_{n\rightarrow\infty}[/mm] n [mm]a_{n}=0[/mm] gelten.

>  Hab leider keine Ahnung wie ich hier rangehen soll. Ich
> hoffe, ihr könnt mir helfen, ich muss die Aufgabe aber halt
> leider in einem Tag schon haben.

Wie die Überschrift sagt, nehm an    [mm] n*a_{n} [/mm] ürde nicht beliebig klein, dann gälte [mm] a_{n}>r/n [/mm] mit r>0, dann hättest du den Vergleich mit der Reihe  mit [mm] a_{n} [/mm] =1/n, die divergiert!
Musst du nur noch schöner formulieren! Solche Behauptungen schreien nach nem Widerspruchsbeweis!
Gruss leduart

Bezug
                
Bezug
Beweis für Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:10 So 28.05.2006
Autor: belgarda

Nun meine Frage nocheinmal am richtigen Ort zu MEINEM Diskussionsthema:
Deine Antwort leuchtet mir ein, aber man soll hier doch die sich ergebende Null und  nicht die Konvergenz/Divergenz beweisen. Ergibt sich die dann aus der Konvergenz/Divergenz?
LG


Bezug
                        
Bezug
Beweis für Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 14:41 So 28.05.2006
Autor: leduart

Hallo belgarda
Die Vors. ist doch: die Summe konvergiert! Behauptung lim [mm] n*a_{n}=0. [/mm]
Bew. durch Widerspruch: Angenommen lim [mm] n*a_{n}>0, [/mm] dann folgt.......
Widerspruch, also Annahme falsch, Behauptung richtig.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]