matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreBeweis für Mengengleichheit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mengenlehre" - Beweis für Mengengleichheit
Beweis für Mengengleichheit < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis für Mengengleichheit: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:24 Do 08.11.2012
Autor: MatheClown11

Aufgabe
Seien A,B,C Mengen. Zeigen Sie A x (B [mm] \cap [/mm] C) = (A x B) [mm] \cap [/mm] (A x C)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Kann ich mit Mengen gleich rechnen wie mit normalen Zahlen? Also einfach Klammern auflösen usw...
Mir würde das etwas komisch vorkommen doch eine andere Idee habe ich leider nicht!
Ich hoffe das verstoßt jetzt nicht gegen die Vorschriften :P
Ein Ansatz würde mir jedoch sehr helfen.

Vielen Dank im voraus :)

        
Bezug
Beweis für Mengengleichheit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 Do 08.11.2012
Autor: luis52

Moin MatheClown11,

zunaechst ein [willkommenmr]


Du musst zweierlei zeigen:

(i) [mm] $A\times(B\cap [/mm] C) [mm] \subset [/mm] (A [mm] \times B)\cap [/mm] (A [mm] \times [/mm] C)$

(ii) $(A [mm] \times B)\cap [/mm] (A [mm] \times [/mm] C) [mm] \subset A\times(B\cap [/mm] C)$

Ich fange mal mit (i) an. Sei [mm] $x\in A\times(B\cap [/mm] C)$. Dann koennen wir
schreiben $x=(r,s)$ mit [mm] $r\in [/mm] A$ und [mm] $s\in B\cap [/mm] C$. Also ist [mm] $s\in [/mm] B$
und [mm] $s\in [/mm] C$. Folglich ist [mm] $(r,s)\in A\times [/mm] B$ und [mm] $(r,s)\in A\times [/mm] C$,
also [mm] $x=(r,s)\in [/mm] (A [mm] \times B)\cap [/mm] (A [mm] \times [/mm] C)$.

Jetzt versuch dich mal selber an (ii).

vg Luis
                        

Bezug
                
Bezug
Beweis für Mengengleichheit: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:36 Do 08.11.2012
Autor: MatheClown11

zuerst einmal danke für die Antwort, hat mir zumindest einmal einen Start gegeben :)
Allerdings komme ich beim zweiten Beweis jetzt auch nicht weiter.

Also ich habe angefangen mit:
Sei [mm] x\in [/mm] (A x B) [mm] \cap [/mm] (A x C) und x=(a,b,c), dann ist [mm] (a,b)\in [/mm] A x B und [mm] (a,c)\in [/mm] A x C
Also ist [mm] a\inA [/mm] und [mm] (b,c)\in [/mm] B x C oder?

Doch wie komme ich jetzt zur Durchschnittsmenge von B und C? Weil ich kann ja nicht sagen, dass b,c automatisch Elemente aus [mm] B\capC [/mm] sind oder? Da b und c ja Elemente von B und C sind.
Bin ich da vollkommen falsch oder fehlt mir nur ein teil zum puzzel? :P

Vielen dank :)

Bezug
                        
Bezug
Beweis für Mengengleichheit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 Do 08.11.2012
Autor: tobit09

Hallo MatheClown11 und auch von mir ein herzliches [willkommenmr]!


> Also ich habe angefangen mit:
>  Sei [mm]x\in[/mm] (A x B) [mm]\cap[/mm] (A x C)

[ok]

> und x=(a,b,c)

Nein, x ist kein Tripel.

[mm] $x\in(A\times B)\cap(A\times [/mm] C)$ bedeutet [mm] $x\in A\times [/mm] B$ und [mm] $x\in A\times [/mm] C$.
Also existieren [mm] $a\in [/mm] A$ und [mm] $b\in [/mm] B$ mit $x=(a,b)$ sowie [mm] $a'\in [/mm] A$, [mm] $c\in [/mm] C$ mit $x=(a',c)$.

> Doch wie komme ich jetzt zur Durchschnittsmenge von B und
> C? Weil ich kann ja nicht sagen, dass b,c automatisch
> Elemente aus [mm]B\capC[/mm] sind oder? Da b und c ja Elemente von B
> und C sind.

Wegen $(a,b)=x=(a',c)$ gilt (a=a' und) b=c.

Kommst du damit weiter?


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]