matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenBeweis globales Maximum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Beweis globales Maximum
Beweis globales Maximum < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis globales Maximum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:26 Fr 04.03.2011
Autor: Loriot95

Aufgabe
Das relle Polynom p habe im Nullpunkt den Wert p(0) = 1. Beweisen Sie, dass die durch f(x) = [mm] p(x)*e^{-|x|} [/mm] definierte Funktion [mm] f:\IR [/mm] -> [mm] \IR [/mm] an mindestens einer Stelle ihr globales Maximum annimmt.

Ok, habe  zunächst die erste Ableitung berechnet:

[mm] \bruch{p'(x)e^{|x|}-p(x)e^{|x|}sign(x)}{(e^{|x|})^{2}} [/mm]

f(0) = 1, f'(x) = 0 [mm] \gdw [/mm] p'(x) = p(x) * sign(x) [mm] \Rightarrow [/mm] p'(0) = 1
[mm] \Rightarrow [/mm] f'(0) = 0.

Nun weiß ich leider nicht wie ich zeigen kann, das es sich hierbei tatsächlich um ein Maximum handelt und schon gar nicht wie ich zeigen kann das es ein globales Maximum ist.  Man müsste ja zeigen, dass f'(x) < 0 für alle x [mm] \in (0,\infty) [/mm] und f'(x) > 0 für alle x [mm] \in (-\infty, [/mm] 0). Ich weiß das die Ableitung einer geraden Funktion ungerade ist und die Ableitung einer ungearden Funktion gerade.  Aber inwiefern bringt mir das hier etwas? Hoffe ihr könnt mir helfen.

LG Loriot95

        
Bezug
Beweis globales Maximum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 Fr 04.03.2011
Autor: kamaleonti

Hi,
> Das relle Polynom p habe im Nullpunkt den Wert p(0) = 1.
> Beweisen Sie, dass die durch f(x) = [mm]p(x)*e^{-|x|}[/mm]
> definierte Funktion [mm]f:\IR[/mm] -> [mm]\IR[/mm] an mindestens einer Stelle
> ihr globales Maximum annimmt.
>  Ok, habe  zunächst die erste Ableitung berechnet:
>  
> [mm]\bruch{p'(x)e^{|x|}-p(x)e^{|x|}sign(x)}{(e^{|x|})^{2}}[/mm]
>  
> f(0) = 1, f'(x) = 0 [mm]\gdw[/mm] p'(x) = p(x) * sign(x) [mm]\Rightarrow[/mm]
> p'(0) = 1 [mm]\Rightarrow[/mm] f'(0) = 0.

Was passiert denn hier?
Unter keinen Umständen muss ein globales Maximum bei 0 liegen.
Du hast richtig erkannt f(0)=1, aber betrachte nun [mm] p(x)=x^3+1. [/mm] Dann ist [mm] f(2)=(2^3+1)e^{-2}=\frac{9}{e^2}>1. [/mm]

Hier soll nur gezeigt werden, dass das globale Maximum tatsächlich angenommen wird.
Dass die Funktion nach oben beschränkt ist, sollte klar sein (exponentielles Wachstum 'schlägt' polynomielles). Also gibt es auf jeden Fall ein Supremum. Du musst zeigen, dass die Funktion den Wert des Supremums tatsächlich annimmt.

LG

Bezug
        
Bezug
Beweis globales Maximum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 Fr 04.03.2011
Autor: fred97


> Das relle Polynom p habe im Nullpunkt den Wert p(0) = 1.
> Beweisen Sie, dass die durch f(x) = [mm]p(x)*e^{-|x|}[/mm]
> definierte Funktion [mm]f:\IR[/mm] -> [mm]\IR[/mm] an mindestens einer Stelle
> ihr globales Maximum annimmt.
>  Ok, habe  zunächst die erste Ableitung berechnet:



Das lass mal lieber ! [mm] e^{|x|} [/mm] ist nicht differenzierbar in 0     !!!

>  
> [mm]\bruch{p'(x)e^{|x|}-p(x)e^{|x|}sign(x)}{(e^{|x|})^{2}}[/mm]
>  
> f(0) = 1, f'(x) = 0 [mm]\gdw[/mm] p'(x) = p(x) * sign(x) [mm]\Rightarrow[/mm]
> p'(0) = 1
> [mm]\Rightarrow[/mm] f'(0) = 0.
>  
> Nun weiß ich leider nicht wie ich zeigen kann, das es sich
> hierbei tatsächlich um ein Maximum handelt und schon gar
> nicht wie ich zeigen kann das es ein globales Maximum ist.  
> Man müsste ja zeigen, dass f'(x) < 0 für alle x [mm]\in (0,\infty)[/mm]
> und f'(x) > 0 für alle x [mm]\in (-\infty,[/mm] 0). Ich weiß das
> die Ableitung einer geraden Funktion ungerade ist und die
> Ableitung einer ungearden Funktion gerade.  Aber inwiefern
> bringt mir das hier etwas? Hoffe ihr könnt mir helfen.
>
> LG Loriot95


Mach Dir klar:

1. f(x) [mm] \to [/mm] 0 für x [mm] \to \pm \infty [/mm]

2.  aus 1. folgt: es gibt ein R>0 mit :  |f(x)|<1 für |x|>R

3. es gibt ein [mm] x_0 \in [/mm] [-R,R]  mit   f(x) [mm] \le f(x_0) [/mm]  für jedes x [mm] \in [/mm] [-R,R]  (warum ?)

4. aus f(0)=p(0)=1 , aus 2. und aus 3. ergibt sich:

                          f(x) [mm] \le f(x_0) [/mm]  für alle x [mm] \in \IR. [/mm]

FRED

Bezug
                
Bezug
Beweis globales Maximum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:59 Fr 04.03.2011
Autor: Loriot95


>
>
> Mach Dir klar:
>  
> 1. f(x) [mm]\to[/mm] 0 für x [mm]\to \pm \infty[/mm]
>  
> 2.  aus 1. folgt: es gibt ein R>0 mit :  |f(x)|<1 für
> |x|>R
>  
> 3. es gibt ein [mm]x_0 \in[/mm] [-R,R]  mit   f(x) [mm]\le f(x_0)[/mm]  für
> jedes x [mm]\in[/mm] [-R,R]  (warum ?)

   Da in [-R,R] die Funktion durch 1 nach oben beschränkt ist.

> 4. aus f(0)=p(0)=1 , aus 2. und aus 3. ergibt sich:
>  
> f(x) [mm]\le f(x_0)[/mm]  für alle x [mm]\in \IR.[/mm]

   heißt das nun, dass selbst der größtmöglichste Funktionswert kleiner gleich 1 sein muss? Und damit f(0) = 1 ein globales Maximum ist?

> FRED

LG Loriot95


Bezug
                        
Bezug
Beweis globales Maximum: Antwort
Status: (Antwort) fertig Status 
Datum: 14:01 Fr 04.03.2011
Autor: steppenhahn

Hallo,


> >
> >
> > Mach Dir klar:
>  >  
> > 1. f(x) [mm]\to[/mm] 0 für x [mm]\to \pm \infty[/mm]
>  >  
> > 2.  aus 1. folgt: es gibt ein R>0 mit :  |f(x)|<1 für
> > |x|>R
>  >  
> > 3. es gibt ein [mm]x_0 \in[/mm] [-R,R]  mit   f(x) [mm]\le f(x_0)[/mm]  für
> > jedes x [mm]\in[/mm] [-R,R]  (warum ?)

>     Da in [-R,R] die Funktion durch 1 nach oben beschränkt
> ist.

Das ist falsch. Wie wäre es mit einer Portion Stetigkeit bei der Argumentation?

> > 4. aus f(0)=p(0)=1 , aus 2. und aus 3. ergibt sich:
>  >  
> > f(x) [mm]\le f(x_0)[/mm]  für alle x [mm]\in \IR.[/mm]


>     heißt das nun,
> dass selbst der größtmöglichste Funktionswert kleiner
> gleich 1 sein muss? Und damit f(0) = 1 ein globales Maximum
> ist?

Nein, das ist nicht die Aussage.
Lies dir das nochmal konzentriert durch. Man braucht f(0) = 1 nur, um sicher gehen zu können, dass das Maximum in [...] liegt (weil man ja weiß, dass alle Werte von f außerhalb von [...] kleiner als 1 sind)

Viele Grüße,
Stefan

Bezug
                                
Bezug
Beweis globales Maximum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:19 Fr 04.03.2011
Autor: Loriot95

Ich denke ich habe es nun verstanden. Danke schön :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]