matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreBeweis über abzählbare Menge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mengenlehre" - Beweis über abzählbare Menge
Beweis über abzählbare Menge < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis über abzählbare Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:51 So 15.04.2012
Autor: yangwar1

Aufgabe
Zeigen Sie, dass die Menge [mm] \IN [/mm] x [mm] \IN [/mm] = {(m, n):m,n [mm] \in \IN} [/mm] abzählbar ist.

Hallo,

folgende Definition:
Sei A eine Menge.
A heißt abzählbar, wenn A endlich oder abzählbar unendlich ist.
A heißt abzählbar unendlich, wenn es eine bijektive Abbildung c: [mm] A->\IN [/mm] gibt.

Die Aufgabe ist auf einem Übungszettel in Informatik. Die Menge  [mm] \IN [/mm] x [mm] \IN [/mm] ist nicht endlich. Zu zeigen ist also, dass die Menge  [mm] \IN [/mm] x [mm] \IN [/mm] abzählbar unendlich ist. Dazu müsste man eine bijektive Abbildung  [mm] \IN [/mm] x [mm] \IN [/mm] -> [mm] \IN [/mm] finden. Die Abbildung f: [mm] \IN [/mm] x [mm] \IN ->\IN, [/mm] f(m,n):=m ist injektiv und surjektiv. Damit ist eine Abbildung gefunden, somit ist die Menge  [mm] \IN [/mm] x [mm] \IN [/mm] abzählbar unendlich und somit abzählbar.

Stimmt das? Würde mir nämlich ein bisschen leicht vorkommen, für eine Übungsaufgabe.

        
Bezug
Beweis über abzählbare Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 11:01 So 15.04.2012
Autor: steppenhahn

Hallo,


> Zeigen Sie, dass die Menge [mm] \IN [/mm] x [mm] \IN [/mm] = {(m, [mm] n):m,n\in \IN} [/mm]
> abzählbar ist.
>  Hallo,


> folgende Definition:
> Sei A eine Menge.
> A heißt abzählbar, wenn A endlich oder abzählbar
> unendlich ist.
>  A heißt abzählbar unendlich, wenn es eine bijektive
> Abbildung c: [mm] A->\IN [/mm] gibt.


> Die Aufgabe ist auf einem Übungszettel in Informatik. Die
> Menge  [mm]\IN[/mm] x [mm]\IN[/mm] ist nicht endlich. Zu zeigen ist also,
> dass die Menge  [mm]\IN[/mm] x [mm]\IN[/mm] abzählbar unendlich ist.

[ok]

> Dazu
> müsste man eine bijektive Abbildung  [mm]\IN[/mm] x [mm]\IN[/mm] -> [mm]\IN[/mm]
> finden.


[ok]


> Die Abbildung f: [mm]\IN[/mm] x [mm]\IN ->\IN,[/mm] f(m,n):=m ist
> injektiv und surjektiv.


Nein. Die Injektivität ist doch locker verletzt:
f(1,2) = f(1,3) = f(1,4) = 1.

Dass deine Argumentation nicht funktionieren kann, siehst du auch an der Tatsache, dass deine Funktion auch für eine Menge

[mm] $\IN \times \IR \to \IN$ [/mm]

Abzählbarkeit liefern würde, obwohl [mm] $\IN \times \IR$ [/mm] nicht abzählbar ist.

--------

Um eine geeignete Funktion zu finden, kannst du dich am Diagonalverfahren orientieren: Schreibe waagerecht und senkrecht die Zahlen 1,2,3,4,5,... der Menge [mm] \IN [/mm] auf, und zähle dann diagonal ab:


    1  2  3  4  5  6
   ------------------
1 I 1  3  6  10 15 21
2 I 2  5  9  14 20
3 I 4  8  13 19
4 I 7  12 18
5 I 11 17
6 I 16


Finde also eine Funktion, die dem Paar (1,1) den Wert 1 zuordnet, (1,2) den Wert 3, usw.

Viele Grüße,
Stefan

Bezug
        
Bezug
Beweis über abzählbare Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 12:23 So 15.04.2012
Autor: tobit09

Hallo yangwar,

> Zeigen Sie, dass die Menge [mm]\IN[/mm] x [mm]\IN[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= $\{$(m, n):m,n [mm]\in \IN$\}$[/mm]

> abzählbar ist.

Wisst ihr schon, dass abzählbare Vereinigungen abzählbarer Mengen wieder abzählbar sind?

In diesem Fall betrachte mal

     [mm] $A_n:=\{(m,n)|m\in\IN\}$ [/mm]

für [mm] $n\in\IN$. [/mm]

Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]