matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBeweis zur Differenzierbarkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Beweis zur Differenzierbarkeit
Beweis zur Differenzierbarkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis zur Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:50 Mi 25.01.2006
Autor: Sherin

Aufgabe
Es sei f: [0,1]  [mm] \to \IR [/mm] eine zweimal stetig differenzierbare Funktion, d.h. f' und f'' sind stetige Funktionen von [0,1] nach  [mm] \IR. [/mm] Es gelte f(0) = f(1) = 0. Sei A > 0 derart, dass gilt  |f''(x)|  [mm] \le [/mm] A  [mm] \forall [/mm] x [mm] \in [/mm] [0,1]. Zeigen Sie, dass dann gilt

| f'(x)| [mm] \le [/mm] A/2 [mm] \forall [/mm] x [mm] \in [/mm] [0,1].

Hallo ihr lieben,

ich sitze gerad an dieser aufgabe und weiß überhaupt net wie ich das machen soll. Kann ich da irgendwas mit dem Mittelwertsatz machen??

Wäre euch echt dankbar für einen Ansatz!

Lg,
Sherin

        
Bezug
Beweis zur Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:45 Do 26.01.2006
Autor: MatthiasKr

Hallo sherin,

ich kann dir vielleicht mit einigen tips weiterhelfen, allerdings bin ich so 100%ig auch noch nicht auf die lösung gekommen. Steht da wirklich $A/2$ und nicht einfach $A$??

Wie dem auch sei: ich gehe mal davon aus, dass ihr den hauptsatz der diff- und int- rechnung schon hattet, oder? wenn du nämlich eine abschätzung für die zweite ableitung hast und eine für die erste suchst, ist dieser satz die erste wahl um die beiden ableitungen in beziehung zu setzen.

Sei also [mm] $x_0\in [/mm] (0,1)$. Dann gilt nach dem HDI:

[mm] $f'(x)-f'(x_0)=\integral_{x_0}^x [/mm] {f''(z) dz}$ bzw.

[mm] $|f'(x)-f'(x_0)|=\left|\integral_{x_0}^x {f''(z) dz}\right|$. [/mm]

Das sieht doch schon mal nicht so schlecht aus. Die rechte Seite kann man nun abschätzen:

[mm] $|f'(x)-f'(x_0)|\le |x-x_0| \cdot [/mm] A$ nach Voraussetzung (klar?)

Was nun noch ein wenig stört, ist der [mm] $f'(x_0)$-Term [/mm] links. Jetzt kommt aber die andere Voraussetzung ins spiel, nämlich $f(0)=f(1)=0$. Nach dem Mittelwertsatz, können wir nämlich [mm] $x_0$ [/mm] so wählen, dass [mm] $f'(x_0)=0$. [/mm] So folgt also

[mm] $|f'(x)|\le |x-x_0| \cdot [/mm] A [mm] \le [/mm] A$

da [mm] $|x-x_0|\le [/mm] 1$.

Wo jetzt noch der Faktor $1/2$ herkommen soll, ist mir allerdings ein wenig schleierhaft.

VG
Matthias







Bezug
                
Bezug
Beweis zur Differenzierbarkeit: Danke..
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:48 Do 26.01.2006
Autor: Sherin

Da steht wirklich A/2, aber danke schonmal für deine Bemühungen, hilft mir auf jeden fall weiter!!

Lg,
Sherin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]