matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikBeweisführung Abelsche Gruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Diskrete Mathematik" - Beweisführung Abelsche Gruppe
Beweisführung Abelsche Gruppe < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisführung Abelsche Gruppe: Hilfe, Tipp
Status: (Frage) beantwortet Status 
Datum: 19:19 Sa 22.03.2014
Autor: DieNase

Aufgabe
Sind die folgenden Strukturen [mm] (X;\circ) [/mm] abelsche Gruppen?
(a) Sei [mm] \in \IN, [/mm] X = [mm] Z_{m} [/mm] und [mm] [x]_{m}\circ [y]_{m} [/mm] = [x + [mm] y]_{m}. [/mm]
(b) Sei m [mm] \in \IN, [/mm] X = [mm] Z_{m} [/mm] und [mm] [x]_{m} \circ [y]_{m} [/mm] = [x * [mm] y]_{m}. [/mm]
(c) Sei p eine Primzahl, X = [mm] Z_{p} \backslash {[0]_{p}} [/mm] und [mm] [x]_{p} \circ [/mm]  [mm] [y]_{p} [/mm] = [x * [mm] y]_{p}. [/mm]

Nunja eine Gruppe muss:
Assotiativgesetz
neutrales Element
inverses Element
haben
Abelsche Gruppe muss:
Kommutativgesetz erfüllen + Gruppen bedingungen.

Als muss ich zeigen:
([x + [mm] y]_{m}) +[c]_{m} [/mm] = [mm] [x]_{m} [/mm] + ([y + [mm] c]_{m}) [/mm]
Hier steh ich so bischen an. Naja ich weiß das es stimmt. Aber wie beweis ich das Jetzt?
gleiches für neutrales elment. Ja es gibt ein [mm] [0]_{m} [/mm] und dieses wird nichts verändern.
inverses elment? Ja. jede restklasse hat ist entweder mit sich selbst invers oder hat ein elment das das neutrale element rauskommt.
Kommutativ gesetz gilt auch. Insofern ist bsp a) eine Abelsche gruppe.

b ist keine und c muss wieder eine sein....

Bloß wie beweist man so etwas. Ist das erstemal das ich sowas zeigen muss und ehrlich gesagt steh ich an. ^^ Bei b kann ich leicht ein gegenbeispiel finden das eben nciht jedes element ein inverses hat.

        
Bezug
Beweisführung Abelsche Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Sa 22.03.2014
Autor: angela.h.b.


> Sind die folgenden Strukturen [mm](X;\circ)[/mm] abelsche Gruppen?
>  (a) Sei [mm]\in \IN,[/mm] X = [mm]Z_{m}[/mm] und [mm][x]_{m}\circ [y]_{m}[/mm] = [x
> + [mm]y]_{m}.[/mm]
>  (b) Sei m [mm]\in \IN,[/mm] X = [mm]Z_{m}[/mm] und [mm][x]_{m} \circ [y]_{m}[/mm] =
> [x * [mm]y]_{m}.[/mm]
>  (c) Sei p eine Primzahl, X = [mm]Z_{p} \backslash {[0]_{p}}[/mm]
> und [mm][x]_{p} \circ[/mm]  [mm][y]_{p}[/mm] = [x * [mm]y]_{p}.[/mm]
>  Nunja eine Gruppe muss:
>  Assotiativgesetz
>  neutrales Element
>  inverses Element
> haben
>  Abelsche Gruppe muss:
>  Kommutativgesetz erfüllen + Gruppen bedingungen.
>
> Als muss ich zeigen:
>  ([x + [mm]y]_{m}) +[c]_{m}[/mm] = [mm][x]_{m}[/mm] + ([y + [mm]c]_{m})[/mm]
>  Hier steh ich so bischen an. Naja ich weiß das es stimmt.
> Aber wie beweis ich das Jetzt?

Hallo,

fürs Assoziativgesetz in (a) ist zu zeigen

[mm] ([x]_m\circ [y]_m)\circ [z]_m=[x]_m\circ ([y]_m\circ [z]_m), [/mm]

und dies ist zu tun, indem Du die Definition der Verknüpfung verwendest und die Gesetze fürs Rechnen mit ganzen Zahlen:

[mm] ([x]_m\circ [y]_m)\circ [z]_m [/mm]

[mm] =[x+y]_m\circ [z]_m [/mm]

[mm] =[(x+y)+z]_m [/mm]

=...

> gleiches für neutrales elment. Ja es gibt ein [mm][0]_{m}[/mm] und
> dieses wird nichts verändern.

Dann schreib: [mm] [0]_m [/mm] ist neutrales Element, denn ...
Rechne vor, daß [mm] [0]_m [/mm] tut, was es tun soll:

Sei [mm] [x]_m\in \IZ/m\IZ. [/mm]

Es ist [mm] [0]_m+[x]_m=..., [/mm]

also...


> inverses elment? Ja. jede restklasse hat ist entweder mit
> sich selbst invers oder hat ein elment das das neutrale
> element rauskommt.

Sei [mm] [x]_m\in \IZ/m\IZ. [/mm]

Sag, welches Element man addieren muß, damit das neutrale herauskommt, und rechne vor, daß es funktioniert.

LG Angela

> Kommutativ gesetz gilt auch. Insofern ist bsp a) eine
> Abelsche gruppe.
>  
> b ist keine und c muss wieder eine sein....
>
> Bloß wie beweist man so etwas. Ist das erstemal das ich
> sowas zeigen muss und ehrlich gesagt steh ich an. ^^ Bei b
> kann ich leicht ein gegenbeispiel finden das eben nciht
> jedes element ein inverses hat.  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]