matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikBewertungsverbund
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Bewertungsverbund
Bewertungsverbund < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bewertungsverbund: Ergänzung Zwischenschritte
Status: (Frage) überfällig Status 
Datum: 18:36 Mo 23.02.2009
Autor: Moe_Hammed

Aufgabe
Ein Unternehmen kann ein neues Projekt mit einem erwarteten Gewinn von 20 GE und einer isolierten Standardabweichung des Gewinns von 35 GE durchführen. Die Überschüsse des neuen Projekts sind völlig unkorreliert mit denjenigen des bisherigen Programms.
Für dieses Ausgangsprogramm werden alternativ zwei Ausgangssituationen betrachtet: In Situation 1 hat das bisherige Programm einen Gewinnerwartungswert von 180 GE und eine Standardabweichung des Gewinns von 50 GE. In Situation 2 beträgt dagegen der Gewinnerwartungswert 220 GE bei gegebener Standardabweichung von 50 GE.

a) Angenommen, das Unternehmen maximiert folgende Nutzenfunktion:
[mm] U(E[G];\sigma(G))=E[G]-0,05\sigma(G) [/mm] ->>G ist Zufallsvariable  
Hängt jetzt die Vorteilhaftigkeit des neuen Projekts von der Ausgangssituation ab?

b)Gehen Sie jetzt davon aus, dass das Unternehmen den Erwartungsnutzen maximiert, wobei eine quadratische Nutzenfunktion der folgenden Art zur Anwendung kommt:
U(G)=5G - [mm] 0,001G^{2} [/mm]
Wie hängt bei dieser Entscheidungsregel die Vorteilhaftigkeit des neuen Projekts von der Ausgangssituation ab? (Hinweis: Formulieren Sie zunächst den Erwartungsnutzen als Funktion des Gewinnerwartungswertes und der Standardabweichung.)

Hallo,

hier ist wieder der Moe :-) und er hat wieder mal eine Aufgabe im Gepäck, die ihm Kopfzerbrechen bereitet. Ich habe zwar eine Lösung dafür, aber wie man von der Ausgangsstellung dahinkommt, ist mir ein Rätsel. Ich bin einfach nicht so fit mit den Erwartungswerten und Standardabweichungen :-( Könnte mir das bitte jemand zeigen?

es grüßt freundlich der Moe

Lösung a)
[mm] \sigma(G_{a} [/mm] + [mm] G_{n})=\wurzel[2]{\sigma^{2}(G_{a})+\sigma^{2}(G_{n})} \not= \sigma(G_{a})+\sigma(G_{n}) [/mm]
Zusätzliche Standardabweichung: 11,033

b) Erwartungsnutzen
[mm] E[U(G)]=5E[G]-0,001(E[G]^{2}+\sigma^{2}(G)) [/mm]
Varianz:
[mm] \sigma^{2}(G_{a}+G_{n})= \sigma^{2}(G_{a}) +\sigma^{2}(G_{n}) [/mm]


        
Bezug
Bewertungsverbund: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Fr 27.02.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]