matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInterpolation und ApproximationBezier & Algorithmus Casteljau
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Interpolation und Approximation" - Bezier & Algorithmus Casteljau
Bezier & Algorithmus Casteljau < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bezier & Algorithmus Casteljau: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:01 Sa 03.06.2017
Autor: Schmetterling99

Hallo,
ich beschäftige mich mit dem Algorithmus von de Casteljau und Bezierkurven, aber leider blicke ich da nicht ganz durch. Ich habe folgende Fragen:

1) Bei Bezier ist es ja so, dass man Kontrollpunkte hat, die mittels Polygon verbunden sind. Die Bezierkurve verläuft ja innerhalb der konvexen Hüller der Kontrollpunkte und startet im ersten Kontrollpunkt und endet im letzten. Das alles ist mir klar.
Nur frage ich mich, wieso die Kurve ca. wie das Polygon verläuft und nicht beispielsweise in der konvexen Hülle mehrere "Ausschweifungen" hat. Damit meine ich z. B. bei Grad 2, dass die Kurve wie eine Parabel verläuft. Wie wird das gesichert? Sie könnte ja auch noch mehr Extrempunkte aufweisen und trotzdem in der konvexen Hülle enthalten sein oder?
Ich glaube , dass es etwas mit der Ableitung zu tun hat, da ich gelesen habe, dass die Tangentensteigung im ersten und letzten Kontrollpunkt in Richtung der benachbarten Kontrollpunkte verläuft. So ganz klar ist mir das aber nicht. Vielleicht kann mir jemand das noch etwas genauer erklären und wie es bei den Kontrollpunkten dazwischen (also nicht ersten und letzten) aussieht?

2) In einem Buch steht folgende Aussage: Eine Beziekurve P ist in einem Randpunkt bis zur k-ten Ableitung durch die k nächstliegenden Bezierpunkte bestimmt. Es gilt auch die Umkehrung: Die Werte von P bis zur k-ten Ableitung an der Stelle 0 legen bereits die Bezierpunkte fest.
Ich verstehe diese Aussage nicht. Ich glaube, dass es die Antwort auf meine erste Frage ist, aber ich verstehe es einfach nicht.


2) Algorithmus von de Casteljau: Mit diesem teilt man das Polynom in Teilsegmente und wiederholt man diesen Schritt bekommt man den Bezierpunkt an genau einer Stelle. Außerdem bekommt man auf diese Weise auch die Bezierkurve oder?

Viele Grüße




        
Bezug
Bezier & Algorithmus Casteljau: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Di 06.06.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]