matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikBindungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "mathematische Statistik" - Bindungen
Bindungen < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bindungen: Allgemeine Frage
Status: (Frage) beantwortet Status 
Datum: 23:32 Mi 20.06.2012
Autor: Katze_91

Hallo, ich hab da mal eine allgemeine Frage zu Bindungen
Bindungen gibt es doch dann, wenn mehrmals gleiche Werte auftauchen, also ich meine Messwerte nicht strikt ordnen kann oder?

was ich mir aber nicht vorstellen kann ist, dass

[mm] \overline{R}^X =\overline{R}^Y=\bruch{n+1}{2} [/mm] ist wenn eine Folge von bivariaten Beobachtungen habe und dazu die Rang-Folge [mm] (R(x_1),R(y_1)),..,(R(x_n),R(y_n)) [/mm] und ich eben keine Bindungen habe
wieso ist der Mittelwert gerade das? ich würde ja sagen das kommt von
[mm] \overline{R}^X=\bruch{1}{n}\summe_{i=1}^{n}R(x_i) =\bruch{1}{n}\bruch{n(n+1)}{2}=\bruch{n+1}{2} [/mm] okay dann steht es da, aber was ist den da jetzt der genaue unterschied zwischen bindungen und keine bindungen weil ich hätte jetzt gedacht, dass [mm] \summe_{i=1}^{n}R(x_i) =\bruch{n(n+1)}{2} [/mm] immer gelten würde
kann mir jemand ein beispiel dazu geben an dem ich es vielleicht sehen kann und mir da der unterschied klar wird, zu den Beobachtungen mit bindungen?

LG
Katze

        
Bezug
Bindungen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:35 Do 21.06.2012
Autor: luis52

Moin, ich weiss nicht, ob ich dich korrekt verstehe, aber  es ist immer $ [mm] \summe_{i=1}^{n}R(x_i) =\bruch{n(n+1)}{2}$, [/mm] gleichgueltig  on Bindungen vorhanden sind oder nicht...

vg Luis



Bezug
                
Bezug
Bindungen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:41 Do 21.06.2012
Autor: Katze_91

Hi
das denk ich mir auch, aber in der Aufgabe steht
"Wir nehmen an, dass keine Bindungen auftreten. Es ist dann [mm] \overline{R}^X [/mm] = [mm] \overline{R}^Y [/mm] = [mm] \bruch{n+1}{2}." [/mm] das würde ich so interpretieren, dass es nicht immer so ist.

aber
[mm] \summe_{i=1}^{n}R(x_i)^2= \bruch{n(n+1)(n+2)}{6} [/mm] gilt nur für keine Bindungen oder?

Bezug
                        
Bezug
Bindungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Sa 23.06.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]