matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieBinomial- und Normalverteilung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - Binomial- und Normalverteilung
Binomial- und Normalverteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomial- und Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Mi 01.06.2011
Autor: XeZZ

Aufgabe
Ein Hotel hat 218 Betten. Reservierungen im Hotel werden mit einer Wahrscheinlichkeit von 0,2 annuliert.
Wieviele Reservierungen kann das Hotel annehmen um mit einer 2,5% Sicherheit das Hotel nicht zu überbuchen.

Heyho,

ich komm bei dieser Aufgabe grade irgendwie absolut nichtmehr weiter. Es gab noch einen Tipp, dass man das an die Normalverteilung approximieren kann und folgende Gleichung:

P(X [mm] \ge [/mm] k) [mm] \approx [/mm] P(Z > [mm] (k-1/2-np)/\wurzel{npq}) [/mm]

das k ist in diesem Fall wohl 219 und mir ist klar, dass P(X [mm] \ge [/mm] 219) [mm] \le [/mm] 0,025 gelten muss und nun n gesucht ist. Ich kann mit der Gleichung dort oben absolut nix anfangen. Ich weiß einfahc nicht was ich nun damit machen soll.

Mein Ansatz mit p = 0,8 und q = 0,2 war erstmal folgender:

1 - [mm] \summe_{k=0}^{218} \vektor{n \\ k} p^{k}q^{n-k} [/mm] <= 0,025

so und das nun nach n auflösen aber das ist mir nicht gelungen geht das überhaupt so eifnach?

mfg



        
Bezug
Binomial- und Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:39 Do 02.06.2011
Autor: Zwerglein

Hi, XeZZ,

> Ein Hotel hat 218 Betten. Reservierungen im Hotel werden
> mit einer Wahrscheinlichkeit von 0,2 annuliert.
> Wieviele Reservierungen kann das Hotel annehmen um mit
> einer 2,5% Sicherheit das Hotel nicht zu überbuchen.
> Heyho,
>
> ich komm bei dieser Aufgabe grade irgendwie absolut
> nichtmehr weiter. Es gab noch einen Tipp, dass man das an
> die Normalverteilung approximieren kann und folgende
> Gleichung:
>
> P(X [mm]\ge[/mm] k) [mm]\approx[/mm] P(Z > [mm](k-1/2-np)/\wurzel{npq})[/mm]

Na, soooo lautet die Formel aber ganz sicher nicht!!

Nehmen wir mal an, P(X [mm] \ge [/mm] k) stehe für die Binomialverteilung.
Dann gilt in der üblichen Schreibweise (mit k = 219):
P(X [mm] \ge [/mm] 219) = 1 - [mm] F_{n; 0,8}(218) \le [/mm] 0,025
bzw. [mm] F_{n; 0,8}(218) \ge [/mm] 0,975

Für die kumulierte Standardnormalverteilung verwendet man meist den Buchstaben [mm] \Phi [/mm]

Dann würdest Du erst mal folgenden Ansatz in der Formelsammlung finden:

[mm] F_{n; 0,8}(218) \approx \Phi(\bruch{218+0,5-0,8*n}{\wurzel{n*0,8*0,2}}) [/mm]  (wobei der Erwartungswert 0,8*n ist!)

Dies musst Du nun in die Ungleichung einsetzen,
dann im Tafelwerk beim Wert 0,975 nachsehen: Ergebnis: 1,960.

Danach musst Du die Ungleichung
[mm] \bruch{218+0,5-0,8*n}{\wurzel{n*0,8*0,2}} \ge [/mm] 1,96
(woraus sich eine quadratische Ungleichung ergibt)
nach n auflösen!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]