matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisBinomische Formel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Binomische Formel
Binomische Formel < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomische Formel: aufgabe
Status: (Frage) beantwortet Status 
Datum: 00:20 Mi 09.02.2005
Autor: ibi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
[mm] \summe_{i=0}^{n} \vektor{n \\ k}=2^n [/mm]
kann mir bitte jd sagen wie man das hier mit vollständige induktion beweisen kann.
habe nämlich keine ahnung!




        
Bezug
Binomische Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 04:02 Mi 09.02.2005
Autor: Youri


>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gut für Dich :-)

Hallo Ibi -

[willkommenmr]

> [mm]\summe_{i=0}^{n} \vektor{n \\ k}=2^n [/mm]
>  habe nämlich keine ahnung!

Zunächst mal:
Um Dir einen Einblick in die Vorgehensweise zu erleichtern,
empfehle ich Dir einen Blick in die Mathebank unter dem Stichwort MBInduktion.

Du musst also die Gültigkeit dieser Aussage zunächst für
[mm]n=0[/mm] nachprüfen.


Induktionsanfang
[mm]\summe_{k=0}^{0} \vektor{0 \\ k}=\vektor{0 \\ 0}= \bruch {0!}{0!*(0-0)!}=1=2^0[/mm]

Stümmt. Das ist eine wahre Aussage.
Ich würde Dir empfehlen zur Einübung der Summenschreibweise und zur Übung der Berechnung des Binomialkoeffizienten dasselbe mal mit [mm]n=1[/mm] zu probieren.

So. Jetzt kommt der
Induktionsschritt

Annahme: Diese Aussage ist richtig für [mm]n \in \IN[/mm].
z.z. [mm]n \rightarrow n+1 [/mm]

[mm]\summe_{k=0}^{n+1} \vektor{n+1 \\ k} =2^{n+1}[/mm]

mit [mm]2^{n+1}=2^n*2=2^n+2^n [/mm]

Dein Ziel ist, folgende Gleichheit erkennbar zu machen:

[mm]\summe_{k=0}^{n} \vektor{n \\ k}+\summe_{k=0}^{n} \vektor{n \\ k}= \summe_{k=0}^{n+1} \vektor{n+1 \\ k} [/mm]

Ich schreib mal nur die linke Seite der Gleichung auf:

[mm]\summe_{k=0}^{n} \vektor{n \\ k}+\summe_{k=0}^{n} \vektor{n \\ k} [/mm]

Jetzt ziehst Du die Summanden für k=0 aus dem ersten Summenzeichen, und für k=n aus dem zweiten Summenzeichen heraus.

[mm]\vektor{n \\ 0} + \summe_{k=1}^{n} \vektor{n \\ k}+\summe_{k=0}^{n-1} \vektor{n \\ k} +\vektor{n \\ n} [/mm]

Nun nutzt Du folgende Beziehung und machst eine sogenannte Indexverschiebung...

[mm]\summe_{k=0}^{n}{a_k}=\summe_{k=1}^{n+1} {a_{k-1}}[/mm]
Probier's mal aus - die Summanden bleiben gleich

Dann gilt:
[mm] = \vektor{n \\ 0} + \summe_{k=1}^{n} \vektor{n \\ k}+\summe_{k=1}^{n} \vektor{n \\ k-1} +\vektor{n \\ n} [/mm]

Da die Summenzeichen nun über dieselben Indizes laufen, kannst Du sie zusammenziehen... -entschuldige die Sprache, ist schon spät ;-)

[mm] = \vektor{n \\ 0} + \summe_{k=1}^{n}\left( \vektor{n \\ k}+ \vektor{n \\ k-1} \right)+\vektor{n \\ n} [/mm]

Mit [mm] \vektor{n \\ 0}= \vektor{n \\ n} =1 [/mm] und
[mm]\vektor{n \\ k}+ \vektor{n \\ k-1}=\vektor{n+1\\k} [/mm]
Letzteres kannst Du mithilfe der Formeln zur Berechnung des MBBinomialkoeffizienten nachrechnen

folgt:
[mm] = 1 + \summe_{k=1}^{n} \vektor{n+1 \\ k} + 1 [/mm]

Noch'n Trick -

[mm]= \vektor{n+1\\0} + \summe_{k=1}^{n} \vektor{n+1 \\ k} + \vektor {n+1\\n+1} [/mm]

[mm]= \summe_{k=0}^{n+1} \vektor{n+1 \\ k}[/mm]

*seufz*

Liebe Grüße und [gutenacht]
Andrea.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]