matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Binomische Formeln
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Binomische Formeln
Binomische Formeln < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomische Formeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:21 Do 01.11.2012
Autor: Franziskus

Aufgabe
[mm] \bruch{1}{(a-b)^2}-\bruch{4ab}{(a^2-b^2)^2}=\bruch{1}{(a+b)^2} [/mm]

"Zeigen Sie" lautet die Aufgabenstellung.. ich steh da grad auf dem schlauch und weiß nicht so recht, wie ich [mm] (a^2-b^2)^2 [/mm] korrekt auflöse. die anderen beiden binomischen formeln sind mir klar.




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Binomische Formeln: Antwort
Status: (Antwort) fertig Status 
Datum: 23:28 Do 01.11.2012
Autor: Helbig

Hallo Franziskus,

> [mm]\bruch{1}{(a-b)^2}-\bruch{4ab}{(a^2-b^2)^2}=\bruch{1}{(a+b)^2}[/mm]
>  "Zeigen Sie" lautet die Aufgabenstellung.. ich steh da
> grad auf dem schlauch und weiß nicht so recht, wie ich
> [mm](a^2-b^2)^2[/mm] korrekt auflöse. die anderen beiden
> binomischen formeln sind mir klar.

Wenn ich [mm] $a^2-b^2$ [/mm] sehe, fällt mir gleich $(a-b)*(a+b)= [mm] a^2-b^2$ [/mm] ein. Die weiteren Schritte liegen dann wohl nahe, oder?

Gruß,
Wolfgang

Bezug
                
Bezug
Binomische Formeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:45 Do 01.11.2012
Autor: Franziskus

Aufgabe
[mm] (a^2-b^2)^2 [/mm] = [mm] (a^2-b^2)(a^2-b^2) [/mm] = (a-b)(a+b)(a-b)(a+b) = [mm] (a^2-2ab+b^2)(a^2-2ab+b^2) [/mm] = [mm] (a^4+b^4+6a^2b^2-4a^3b-4ab^3) [/mm]

Sofern ich mich nicht verrechnet habe bzw. Formeln falsch angewendet habe.. ich kann mir nich so recht vorstellen, dass das zum Ergebnis führt.

Meiner Meinung nach muss ich den ersten und zweiten Term zuerst auf einen gemeinsamen Nenner bringen, dann kann ich (hoffentlich) durch kürzen und umformen zum Ergebnis kommen.

Bezug
                        
Bezug
Binomische Formeln: Antwort
Status: (Antwort) fertig Status 
Datum: 23:53 Do 01.11.2012
Autor: leduart

Hallo
die Idee war [mm] (a^2-b^2)^2 [/mm] nicht auszurechnen, warum solltest du? du willst doch nur den HN von [mm] (a-b)^2 [/mm] und [mm] (a^2-b^2)^2 =(a-b)^2*(a+b)^2 [/mm]  finden.

aber auf [mm] (a^2-b^2)^2 [/mm] kann man die normale bin formel anwenden
[mm] =((a^2)^2-2a^2*b^2+(b^2)^2) [/mm] das ist beim ausrechnen alles.
Gruss leduart

Bezug
                                
Bezug
Binomische Formeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:06 Fr 02.11.2012
Autor: Franziskus

Danke für eure Hilfe : ) bei mir ist nun der Groschen gefallen. Durch erweitern des ersten Terms mit [mm] (a+b)^2 [/mm] kann ich die beiden ersten Terme auf einen Nenner schieben und dann entsprechend auf das Ergebnis kürzen.

Bezug
                                        
Bezug
Binomische Formeln: ich meinte ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:29 Fr 02.11.2012
Autor: Helbig

Hallo Franziskus,

am schnellsten geht es, wenn Du die Gleichung mit [mm] $(a^2-b^2)^2=(a+b)^2*(a-b)^2$ [/mm] multiplizierst und dann kürzt:

[mm] $\bruch{1}{(a-b)^2}-\bruch{4ab}{(a^2-b^2)^2}=\bruch{1}{(a+b)^2}$ [/mm]

[mm] $\gdw$ [/mm]

[mm] $(a+b)^2 [/mm] - 4ab = [mm] (a-b)^2$ [/mm]

Gruß,
Wolfgang



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]