matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionBinomischer Satz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Induktion" - Binomischer Satz
Binomischer Satz < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomischer Satz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 Sa 31.01.2015
Autor: sandroid

Aufgabe
Beweise den binomischen Satz induktiv mithilfe des Satzes:

[mm] \binom{n}{k}+\binom{n}{k+1}=\binom{n+1}{k+1} [/mm]

Mir fehlt der Ansatz dazu leider noch ganz.

Der binomische Sartz und dessen Herleitung sind mir bekannt.

Jaja: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Binomischer Satz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Sa 31.01.2015
Autor: abakus

Fang doch einfach mal an.
Induktionsanfang?
[mm] $(a+b)^1$  [/mm] ...

Bezug
                
Bezug
Binomischer Satz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:48 Sa 31.01.2015
Autor: sandroid

Induktionsanfang für n = 1:

(a + b) = [mm] \summe_{k=0}^{1} \binom{1}{0}a^{1-k}b^{k}=a+b [/mm]

Induktion: n [mm] \to [/mm] n + 1

(a + [mm] b)^{n+1} [/mm] = [mm] \summe_{k=0}^{n+1} \binom{n+1}{k}a^{n+1-k}b^{k} [/mm]
[mm] =b^{n+1} [/mm] + [mm] \summe_{k=0}^{n} \binom{n+1}{k}a^{n+1-k}b^{k} [/mm]

Ich komme da einfach nicht weiter.

Bezug
                        
Bezug
Binomischer Satz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Sa 31.01.2015
Autor: MathePower

Hallo sandroid,

> Induktionsanfang für n = 1:
>  
> (a + b) = [mm]\summe_{k=0}^{1} \binom{1}{0}a^{1-k}b^{k}=a+b[/mm]
>  
> Induktion: n [mm]\to[/mm] n + 1
>  
> (a + [mm]b)^{n+1}[/mm] = [mm]\summe_{k=0}^{n+1} \binom{n+1}{k}a^{n+1-k}b^{k}[/mm]
>  
> [mm]=b^{n+1}[/mm] + [mm]\summe_{k=0}^{n} \binom{n+1}{k}a^{n+1-k}b^{k}[/mm]
>  
> Ich komme da einfach nicht weiter.


Fang doch so an:

[mm]\left(a+b\right)^{n+1}=\left(a+b\right)*\left(a+b\right)^{n}=\left(a+b\right)*\summe_{k=0}^{n} \binom{n}{k}a^{n-k}b^{k}[/mm]

Muiltipliziere dies aus, dann hast Du zwei Summen.
Dann ist das nach Ausdrücken der Form [mm]a^{r}*b^{s}[/mm] zu sortieren,
damit Du die in der Aufgabe gegebene Formel verwenden kannst.


Gruss
MathePower

Bezug
                                
Bezug
Binomischer Satz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:01 So 01.02.2015
Autor: sandroid

Vielen Dank für den sehr nützlichen Hinweis.

Um ganz ehrlich zu sein: Ich wäre jedoch so noch lange nicht drauf gekommen, dazu bin ich noch zu wenig mit Summen vertraut.

Den Beweis habe ich aber dann auch im []Beweisarchiv gefunden, für alle nachfolgend interessierten hieran.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]