matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenBitte um Kontrolle Extrema!
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Bitte um Kontrolle Extrema!
Bitte um Kontrolle Extrema! < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bitte um Kontrolle Extrema!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:33 Sa 30.08.2008
Autor: Surfer

Hallo, habe hier folgende Rechnung zu Extrema unter Nebenbedingung gerechnet und nun einige Punkte herausbekommen, jedoch habe ich keine Lösung, deshalb möchte ich überprüfen lassen ob die Punkte stimmen können:

Aufgabe (hab es hier mit der nebenbedingung a) gemacht):
[Dateianhang nicht öffentlich]

Punkte:
P1(0/0)
P2(1/0)
P3(-1/0)
P4(0/1)
P5(0/-1)
[mm] P6(\wurzel{1/2}/\wurzel{1/2}) [/mm]
[mm] P7(-\wurzel{1/2}/\wurzel{1/2}) [/mm]
[mm] P8(\wurzel{1/2}/-\wurzel{1/2}) [/mm]
[mm] P9(-\wurzel{1/2}/-\wurzel{1/2}) [/mm]

lg Surfer


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Bitte um Kontrolle Extrema!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:38 Sa 30.08.2008
Autor: angela.h.b.

Hallo,

mir käm's schon sinnvoll vor, wenn Du zumindest die Lagrangefunktion und die partiellen Ableitungen dazuschreiben würdest.

Gruß v. Angela

Bezug
        
Bezug
Bitte um Kontrolle Extrema!: Antwort
Status: (Antwort) fertig Status 
Datum: 19:50 Sa 30.08.2008
Autor: MathePower

Hallo Surfer,

> Hallo, habe hier folgende Rechnung zu Extrema unter
> Nebenbedingung gerechnet und nun einige Punkte
> herausbekommen, jedoch habe ich keine Lösung, deshalb
> möchte ich überprüfen lassen ob die Punkte stimmen können:
>  
> Aufgabe (hab es hier mit der nebenbedingung a) gemacht):
>  [Dateianhang nicht öffentlich]
>  
> Punkte:
>  P1(0/0)
>  P2(1/0)
>  P3(-1/0)
>  P4(0/1)
>  P5(0/-1)
>  [mm]P6(\wurzel{1/2}/\wurzel{1/2})[/mm]
>  [mm]P7(-\wurzel{1/2}/\wurzel{1/2})[/mm]
>  [mm]P8(\wurzel{1/2}/-\wurzel{1/2})[/mm]
>  [mm]P9(-\wurzel{1/2}/-\wurzel{1/2})[/mm]


Der Punkt P1 gehört nach meiner Rechnung nicht dazu, weil die Nebenbedingung [mm]x^{2}+y^{2}=1[/mm] nicht erfüllt ist.


>  
> lg Surfer
>  


Gruß
MathePower

Bezug
                
Bezug
Bitte um Kontrolle Extrema!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:02 Sa 30.08.2008
Autor: Surfer

wie sehe ich das, dass die nebenbedingung nicht erfüllt ist?, aber sonst ist es ok so?

lg Surfer

Bezug
                        
Bezug
Bitte um Kontrolle Extrema!: Antwort
Status: (Antwort) fertig Status 
Datum: 20:37 Sa 30.08.2008
Autor: MathePower

Hallo Surfer,


> wie sehe ich das, dass die nebenbedingung nicht erfüllt

In dem Du prüfst ob [mm]x^{2}+y^{2}=1[/mm] gilt.

Ich weiss nicht, wie Du auf den Punkt [mm]}\left(0,0\right)[/mm] gekommen bist.

Jedenfalls das entsprechende Gleichungssystem liefert diesen Punkt nicht.

[mm]f\left(x,y\right)=x^{2}y^{2}-x^{2}-y^{2}+1[/mm]

unter der Nebenbedingung

[mm]n\left(x,y\right)=x^{2}+y^{2}-1[/mm]

liefert dann das folgenden Gleichungssystem:

[mm]\bruch{\partial}{\partial x}\left(f\left(x,y\right)-\lambda*n\left(x,y\right)\right)=0[/mm]

[mm]\bruch{\partial}{\partial y}\left(f\left(x,y\right)-\lambda*n\left(x,y\right)\right)=0[/mm]

[mm]n\left(x,y\right)=0[/mm]

> ist?, aber sonst ist es ok so?


Die anderen Punkte sind ok so.


>  
> lg Surfer


Gruß
MathePower

Bezug
                                
Bezug
Bitte um Kontrolle Extrema!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:40 So 31.08.2008
Autor: bigalow

Wie kommt man den auf P6-P9?

Die drei Gleichungen bei a):

$x²+y²=1$
[mm] $2x(y²-1+\lambda)=0$ [/mm]
[mm] $2y(x-1+\lambda)=0$ [/mm]



Bezug
                                        
Bezug
Bitte um Kontrolle Extrema!: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 So 31.08.2008
Autor: MathePower

Hallo bigalow,

> Wie kommt man den auf P6-P9?
>  
> Die drei Gleichungen bei a):
>  
> [mm]x²+y²=1[/mm]
>  [mm]2x(y²-1+\lambda)=0[/mm]

>  [mm]2y(x-1+\lambda)=0[/mm]


Das sollte doch

[mm]2y(x^{2}-1+\lambda)=0[/mm]

heißen.


>  
>  


Aus der zweiten Gleichung folgt:

[mm]x=0 \vee y^{2}-1+\lambda=0[/mm]

Nun den Fall x=0 bzw. y=0 haben wir schon abgarbeitet.

Bleibt also [mm]y^{2}-1+\lambda=0[/mm], woraus sich

[mm]y^{2}=1-\lambda[/mm]

ergibt.

Aus der ersten Gleichung ergibt sich dann:

[mm]x^{2}+y^{2}=1 \Rightarrow x^{2}=1-y^{2}=1-\left(1-\lambda\right)=\lambda[/mm]

Eingesetzt in die verbleibende Gleichung:

[mm]x^{2}-1+\lambda=0 \gdw \lambda-1+\lambda=2\lambda-1=0 \Rightarrow \lambda=\bruch{1}{2}[/mm]

Hieraus ergibt sich:

[mm]x^{2}=\lambda=\bruch{1}{2} \Rightarrow x= \pm \bruch{1}{\wurzel{2}}[/mm]

[mm]y^{2}=1-\lambda=1-\bruch{1}{2}=\bruch{1}{2} \ \Rightarrow y= \pm \bruch{1}{\wurzel{2}}[/mm]

Jetzt mußt Du nur noch jede x-Lösung mit jeder y-Lösung kombinieren und Du erhältst P6-P9.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]